Криогенные сосуды работающие под давлением

Криогенные сосуды работающие под давлением thumbnail

Компания ООО «МВиФ» предлагает изготовление сосудов работающих под давлением PN10, PN16, PN25, PN40. Объём и форма сосудов выполняются по ТЗ заказчика. Сосуды сварены аргонодуговой сваркой из труб и штампованных деталей из нержавеющей стали AISI 304. За счёт применения стандартных комплектующих, сосуды имеют привлекательную цену и быстрый срок изготовления. Сосуды имеют маркировку, заводской номер, паспорт.

Предлагаем следующие типы сосудов работающих под давлением:

  • Пробоотборные баллоны (цилиндры, сосуды) PN10, PN16, PN25, PN40 из нержавеющей стали одногорловые и двухгорловые. Дополнительная комплектация: установленный вентиль (сальниковый, сильфонный, мембранный), сифонная трубка, разрывная предохранительная мембрана, переносная ручка, защитный колпак, металлорукав.
  • Ресиверы из нержавеющей стали PN10, PN16, PN25, PN40 одногорловые и двухгорловые. Дополнительная комплектация: установленные вентиль или кран, предохранительный клапан, манометр.
  • Контейнер для транспортировки хранения и выдачи жидкости (Electropolished Stainless Steel Bubbler) PN10, PN16, PN25, PN40 из нержавеющей стали. Типовое применение – хранение и выдача металлоорганических соединений для эпитаксиальных процессов. Оборудуются сильфонными или мембранными клапанами с трубными фитингами или VCR соединениям. Дополнительные опции: электрохимполировка, защитное кольцо вокруг арматуры, исполнение из стали AISI 316.
  • Реакторы для химического синтеза PN10, PN16, PN25, PN40, PN100, PN250, PN400, PN600. Возможные исполнения: любое количество портов, разборная или неразборная конструкция, герметичные зонды для термопар, внутренний теплообменник, термостат.
  • Сепараторы фаз PN10, PN16, PN25, PN40, PN100, PN250, PN400, PN600 для отвода жидких и газообразных продуктов реакций
  • Сепараторы фаз PN10, PN16 криогенные для отвода паров жидкого азота из криогенных из трубопроводов. Исполняются с изоляцией из теплоизоляционного материала или экранно-вакуумной изоляцией
Ресивер 75л для подачи пищевой смеси
Ресивер 75л для подачи пищевой газовой смеси кислород / углекислый газ в упаковочные машины
Пробоотборный баллон
Пробоотборный баллон
Контейнер для хранения и выдачи металлоорганических соединений
Контейнер для хранения и выдачи металлоорганических соединений
Сепаратор сбора жидкости
Сепаратор сбора жидкости для установки на дренажный порт коалесцирующего фильтра; объём 500мл, 80бар (8,0МПа); краны слива конденсата и сброса давления; разборная конструкция на основе SAE фланцев; нержавеющая сталь
Пробоотборный сосуд для жидких проб
Пробоотборный сосуд с сифонной трубкой
для жидких проб
cтенд ла­бо­ра­тор­но­го ка­та­ли­ти­че­ско­го син­те­за аро­ма­ти­че­ских уг­ле­во­до­ро­дов из ме­та­но­ла, эта­но­ла, ме­та­на
Стенд для ла­бо­ра­тор­но­го ка­та­ли­ти­че­ско­го син­те­за аро­ма­ти­че­ских уг­ле­во­до­ро­дов из ме­та­но­ла, эта­но­ла, ме­та­на; Содержит сосуды работающие под давлением ре­си­вер, ре­ак­тор по­лу­че­ния ди­ме­ти­ло­во­го или ди­эти­ло­во­го эфи­ра, ре­ак­тор изо­ме­ри­за­ции эфи­ров до аро­ма­ти­че­ских уг­ле­во­до­ро­дов, пе­чи для по­до­гре­ва сме­си­те­лей и ре­ак­то­ров, теп­ло­об­мен­ни­ки с во­дя­ным охла­жде­ни­ем, кон­ден­са­то­ры для сбо­ра про­дук­тов ре­ак­ции
Ресивер двугорловый объём
Ресивер двугорловый объём 10л 4МПа (40бар), нержавеющая сталь AISI 304L
Ресивер двугорловый объём
Ресивер двугорловый объём 25л 3,5МПа (35бар), нержавеющая сталь AISI 304L
Реактор для работы со смесью углеводородов в жидком и газообразном состоянии
Реактор предназначен для работы со смесью углеводородов в жидком и газообразном состоянии. Вместимость -0,25 л, рабочее давление – 7,5 МПа, рабочая температура, 550 °С, присоединение на входе и выходе – патрубок Æ6х1,5, материал – нержавеющая сталь AISI 316L, AISI 304, габаритные размеры, 1770х85х60 мм

Electropolished Stainless Steel Bubbler, Объём 10л (10000мл)

Electropolished Stainless Steel Bubbler, Объём 3л (3000мл)

Объём 0,25л (250мл)

Контейнеры (бабблеры, баллоны, сосуды) для транспортировки и выдачи металлорганических соединений, снабжены сильфонными вентилями для выдачи продукта и наддува азотом, внутренней сифонной трубкой, внутренняя поверхность электрохимполированная, полностью сварная конструкция, VCR фитинги для подключения, транспортировочные заглушки
Стальные сварные сосуды
Сосуды объём 500мл и 1000мл, сварные, сталь AISI 304L. Укомплектованы сильфонными вентилями 1/2″ ZCR и заглушками на цепочке. Предназначены для работы с жидкими и газообразными веществами в вакуумируемых системах. Одногорловой сосуд СП-500-25-1хВР-СВ для испарения жидкости за счёт нагрева стенки сосуда (питание эпитаксиальной установки). Двугорловый сосуд СП-1000-25-2хВР-СВ,СФ30 для конденсации веществ из газовой фазы за счёт охлаждения стенки жидким азотом, один из ниппелей снабжён сифонной трубкой длиной 30% от верха сосуда

Источник

Главная / Проектировщику / Справочная информация – ГОСТ СНИП ПБ / Правила промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением /

Версия для печати

Периодичность технических освидетельствований сосудов, находящихся в эксплуатации и не подлежащих учету в органах Ростехнадзора

№ п/п Наименование Наружный и внутренний осмотры Гидравлическое испытание пробным давлением
1 Сосуды, работающие со средой, вызывающей разрушение и физико-химическое превращение материала со скоростью не более 0,1 мм/год 2 года 8 лет
2 Сосуды, работающие со средой, вызывающей разрушение и физико-химическое превращение материала со скоростью более 0,1 мм/год 12 месяцев 8 лет

Периодичность технических освидетельствований сосудов, подлежащих учету в органах Ростехнадзора

№ п/п Наименование Наружный и внутренний осмотры Гидравлическое испытание пробным давлением
1 Сосуды, работающие со средой, вызывающей разрушение и физико-химическое превращение материала со скоростью не более 0,1 мм/год 4 года 8 лет
2 Сосуды, работающие со средой, вызывающей разрушение и физико-химическое превращение материала со скоростью более 0,1 мм/год 4 года 8 лет
3 Сосуды, зарытые в грунт, предназначенные для хранения жидкого нефтяного газа с содержанием сероводорода не более 5 г на 100 *, и сосуды, изолированные на основе вакуума и предназначенные для транспортирования и хранения сжиженных кислорода, азота и других некоррозионных криогенных жидкостей 10 лет 10 лет
4 Сульфитные варочные котлы и гидролизные аппараты с внутренней кислотоупорной футеровкой 5 лет 10 лет
5 Многослойные сосуды для аккумулирования газа, установленные на автомобильных газонаполнительных компрессорных станциях 10 лет 10 лет
6 Регенеративные подогреватели высокого и низкого давления, бойлеры, деаэраторы, ресиверы и расширители продувки электростанций Внутренний осмотр и гидравлическое испытание после двух капитальных ремонтов, но не реже одного раза в 12 лет
7 Сосуды в производствах аммиака и метанола, вызывающих разрушение и физико-химическое превращение материала со скоростью не более 0,5 мм/год 8 лет 8 лет
8 Теплообменники с выдвижной трубной системой нефтехимических предприятий, работающие с давлением выше 0,07 до 100 МПа, со средой, вызывающей разрушение и физико-химическое превращение материала, со скоростью не более 0,1 мм/год 12 лет 12 лет
9 Теплообменники с выдвижной трубной системой нефтехимических предприятий, работающие с давлением выше 0,07 до 100 МПа, со средой, вызывающей разрушение и физико-химическое превращение материала со скоростью более 0,1 до 0,3 мм/год 8 лет 8 лет
10 Сосуды нефтехимических предприятий, работающие со средой, вызывающей разрушение и физико-химическое превращение материала со скоростью не более 0,1 мм/год 6 лет 12 лет
11 Сосуды нефтехимических предприятий, работающие со средой, вызывающей разрушение и физико-химическое превращение материала со скоростью более 0,1 до 0,3 мм/год 4 года 8 лет
12 Сосуды нефтехимических предприятий, работающие со средой, вызывающей разрушение и физико-химическое превращение материала со скоростью более 0,3 мм/год 4 года 8 лет

Примечания:

1. Техническое освидетельствование зарытых в грунт сосудов с некоррозионной средой, а также с жидким нефтяным газом с содержанием сероводорода не более 5 г/100 м можно производить без освобождения их от грунта и снятия наружной изоляции при условии отсутствия нарушений антикоррозионной защиты и проведения контроля толщины стенок сосудов неразрушающим методом. Замеры толщины стенок должны быть произведены по специально составленным для этого инструкциям.

2. Гидравлическое испытание сульфитных варочных котлов и гидролизных аппаратов с внутренней кислотоупорной футеровкой допускается не производить при условии контроля металлических стенок этих котлов и аппаратов ультразвуковой дефектоскопией. Ультразвуковая дефектоскопия должна быть произведена в период их капитального ремонта, но не реже одного раза в пять лет по инструкции в объеме не менее 50% поверхности металла корпуса и не менее 50% длины швов, с тем чтобы 100% ультразвуковой контроль осуществлялся не реже чем через каждые 10 лет.

3. Сосуды, изготовляемые с применением композиционных материалов, зарытые в грунт, осматривают и испытывают по методике разработчика проекта и (или) изготовителя сосуда.

Периодичность технических освидетельствований цистерн и бочек, находящихся в эксплуатации и не подлежащих учету в органах Ростехнадзора

№ п/п Наименование Наружный и внутренний осмотры Гидравлическое испытание пробным давлением
1 Цистерны и бочки, в которых давление выше 0,07 МПа создается периодически для их опорожнения 2 года 8 лет
2 Бочки для сжиженных газов, вызывающих разрушение и физико-химическое превращение материала со скоростью не более 0,1 мм/год 4 года 4 года
3 Бочки для сжиженных газов, вызывающих разрушение и физико-химическое превращение материала со скоростью более 0,1 мм/год 2 года 2 года

Периодичность технических освидетельствований цистерн, находящихся в эксплуатации и подлежащих учету в органах Ростехнадзора

№ п/п Наименование Наружный и внутренний осмотры Гидравлическое испытание пробным давлением
1 Цистерны железнодорожные для транспортирования пропан-бутана и пентана 10 лет 10 лет
2 Цистерны изолированные на основе вакуума 10 лет 10 лет
3 Цистерны железнодорожные, изготовленные из сталей марок 09Г2С и 10Г2СД, прошедшие термообработку в собранном виде и предназначенные для перевозки аммиака 8 лет 8 лет
4 Цистерны для сжиженных газов, вызывающих разрушение и физико-химическое превращение материала со скоростью более 0,1 мм/год 4 года 8 лет
5 Все остальные цистерны 4 года 8 лет

Периодичность технических освидетельствований цистерн, находящихся в эксплуатации и подлежащих учету в органах Ростехнадзора

№ п/п Наименование Наружный и внутренний осмотры Гидравлическое испытание пробным давлением
1 Цистерны железнодорожные для транспортировки пропан-бутана и пентана 10 лет 10 лет
2 Цистерны изолированные на основе вакуума 10 лет 10 лет
3 Цистерны железнодорожные, изготовленные из сталей марок 09Г2С и 10Г2СД, прошедшие термообработку в собранном виде и предназначенные для перевозки аммиака 8 лет 8 лет
4 Цистерны для сжиженных газов, вызывающих разрушение и физико-химическое превращение материала со скоростью более 0,1 мм/год 4 года 8 лет
5 Все остальные цистерны 4 года 8 лет

Периодичность технических освидетельствований баллонов, находящихся в эксплуатации и не подлежащих учету в органах Ростехнадзора

№ п/п Наименование Наружный и внутренний осмотры Гидравлическое испытание пробным давлением
1 Баллоны, находящиеся в эксплуатации для наполнения газами, вызывающими разрушение и физико-химическое превращение материала:        
    со скоростью не более 0,1 мм/год 5 лет 5 лет
    со скоростью более 0,1 мм/год 2 года 2 года
2 Баллоны, предназначенные для обеспечения топливом двигателей транспортных средств, на которых они установлены: а) для сжатого газа:        
изготовленные из легированных сталей и металлокомпозитных материалов 5 лет 5 лет
изготовленные из углеродистых сталей и металлокомпозитных материалов 3 года 3 года
изготовленные из металлокомпозитных материалов, в том числе с алюминиевыми лейнерами 3 года 3 года
изготовленные из неметаллических материалов 2 года 2 года
б) для сжиженного газа 2 года 2 года
3 Баллоны со средой, вызывающей разрушение и физико-химическое превращение материалов (коррозия и т.п.) со скоростью менее 0,1 мм/год, в которых давление выше 0,07 МПа создается периодически для их опорожнения 10 лет 10 лет
4 Баллоны, установленные стационарно, а также установленные постоянно на передвижных средствах, в которых хранятся сжатый воздух, кислород, аргон, азот, гелий с температурой точки росы -35°С и ниже, замеренной при давлении 15 МПа и выше, а также баллоны с обезвоженной углекислотой 10 лет 10 лет

Периодичность технических освидетельствований баллонов, подлежащих учету в органах Ростехнадзора

№ п/п Наименование Наружный и внутренний осмотры Гидравлическое испытание пробным давлением
1 Баллоны, установленные стационарно, а также установленные постоянно на передвижных средствах, в которых хранятся сжатый воздух, кислород, азот, аргон и гелий с температурой точки росы -35°С и ниже, замеренной при давлении 15 МПа и выше, а также баллоны с обезвоженной углекислотой 10 лет 10 лет
    Все остальные баллоны:        
2 со средой, вызывающей разрушение и физико-химическое превращение материалов (коррозия и т.п.) со скоростью не более 0,1 мм/год 4 года 8 лет
    со средой, вызывающей разрушение и физико-химическое превращение материалов со скоростью более 0,1 мм/год 2 года 8 лет

<< назад / к содержанию Правил / вперед >>

Источник

Described gradual work on technical diagnostics of cryogenic vessels. The importance of internal pnevmoispytany their vessels while acoustic emission monitoring process for the early detection of developing defects in them

Keywords:cryogenicvessels, technicaldiagnosis

В настоящее время в различных отраслях промышленности используется значительное количество криогенных сосудов, предназначенных для хранения, транспортировки и разлива криогенных жидкостей, со сроком эксплуатации более 20 лет. Криогенные сосуды относятся к опасным производственным объектам и подпадают под действие Федерального закона № 116-Ф3 от 21.07.1997 г. «О промышленной безопасности опасных производственных объектов». Поэтому по истечении нормативного срока службы они должны быть подвергнуты экспертизе промышленной безопасности, включающей в себя их техническое диагностирование и расчет остаточного ресурса для определения возможности дальнейшей эксплуатации.

Техническое диагностирование криогенных сосудов осуществляется в соответствии с РД 2082–15–98 «Резервуары криогенные. Методика технического освидетельствования» и РД 2082–18–2005 «Программа технического диагностирования и продления назначенного срока службы криогенных резервуаров». Оно включает в себя:

                    анализ технической и эксплуатационной документации,

                    визуальный и измерительный контроль,

                    толщинометрию и дюрометрию,

                    дефектоскопию сварных швов,

                    проверку вакуумной герметичности термоизоляционного пространства,

                    испытание на прочность и расчет остаточного ресурса.

В рамках анализа технической и эксплуатационной документации, прежде всего, уделяется внимание изучению паспорта на внутренний сосуд, подвергающийся воздействию высоких давлений и низких температур, технологической справки на внутренний сосуд, прочностного расчета внутреннего сосуда, сборочного чертежа криогенного сосуда в целом, технического описания и инструкции по его эксплуатации, инструкции по техническому обслуживанию криогенного сосуда, сменного журнала, журнала проверки манометров, предписаний органов Ростехнадзора, ранее выданных заключений экспертизы промышленной безопасности. При изучении паспорта акцентируется внимание на наименование и назначение криогенного сосуда, его заводской номер, завод-изготовитель, даты изготовления и ввода в эксплуатацию, рабочие давления и рабочие температуры составных элементов криогенного сосуда, расчетное и пробное давления внутреннего сосуда, его расчетная температура и рабочий объем, скорость коррозии основных элементов криогенного сосуда, антикоррозионное покрытие, теплоизоляцию, объем неразрушающего контроля на заводе-изготовителе. Важную часть анализа эксплуатационной документации составляют сведения о ремонтах и причинах запрещения эксплуатации криогенного сосуда. Необходимым предварительным этапом технического диагностирования является систематизация сведений об основных элементах внутреннего сосуда (обечайки, днищах, горловинах, крышек люков, трубопроводов): их геометрических параметрах, толщинах стенок, марок материалов, из которых они изготовлены. Следующим этапом является анализ фактических условий эксплуатации сосуда, включающих среднее количество суток работы сосуда в год, количество циклов его нагружения за весь период эксплуатации и в среднем за год, максимальное рабочее давление во внутреннем сосуде, минимальная рабочая температура в нем, рабочая среда, наличие антикоррозионного покрытия, состав теплоизоляции, сведения о технических освидетельствованиях и технических диагностированиях, данные о реконструкциях и модернизациях.

Визуальному и измерительному контролю подвергаются полностью наружная поверхность теплоизоляционного кожуха, частично (в доступных местах через технологические отверстия) наружная и внутренняя поверхности внутреннего сосуда, трубопроводы обвязки, сварные швы кожуха и доступные участки сварных швов внутреннего сосуда, арматурный шкаф.

Проверяются вентили, мембранные узлы, манометры, предохранительные клапаны.

Толщинометрии (преимущественно ультразвуковой) и дюрометрии подвергаются доступные участки составных элементов внутреннего сосуда. Доступными участками ограничивается также дефектоскопия сварных швов внутреннего сосуда.

Вследствие последнего при техническом диагностировании криогенного сосуда важное место отводится проведению пневмоиспытаний его внутреннего сосуда с одновременным акустико-эмиссионным (АЭ) контролем, регламентируемым Правилами ПБ 03–593–03 «Правила организации и проведения акустико-эмиссионного контроля сосудов, аппаратов, котлов и технологических трубопроводов». При проведении АЭ-контроля АЭ-преобразователи устанавливаются на естественных волноводах (трубопроводах обвязки) так, чтобы покрыть всю поверхность внутреннего сосуда. Это позволяет надежно выявлять на внутреннем сосуде активные, критически активные и катастрофически активные АЭ-источники. Если таковые отсутствуют, то делается вывод, что внутренний сосуд не содержит развивающихся дефектов и потому криогенный сосуд может быть допущен к дальнейшей эксплуатации. При регистрации же даже признаков активных АЭ-источников в зоне их обнаружения на поверхности теплоизоляционного кожуха вырезаются технологические окна для дефектоскопии подозрительных участков поверхности внутреннего сосуда традиционными методами, и решение о допуске криогенного сосуда к дальнейшей эксплуатации принимается по результатам такой дефектоскопии.

Завершается техническое диагностирование криогенного сосуда восстановлением вакуума в теплоизоляционном пространстве и проверкой его вакуумной герметичности.

По результатам технического диагностирования выполняется прочностной расчет, расчет остаточного ресурса и определяется срок дальнейшей эксплуатации криогенного сосуда до проведения его очередной экспертизы промышленной безопасности.

Таким образом, при поэтапном проведении всего комплекса работ по техническому диагностированию криогенных сосудов из-за их конструктивных особенностей важное и во многом определяющее место отводится пневмоиспытаниям их внутренних сосудов с одновременным АЭ-контролем с целью объективного выявления в них зон возможных развивающихся дефектов. В результате в большинстве случаев техническое диагностирование криогенных сосудов сводится к проведению работ, основанных на использовании только неразрушающих методов контроля.

Источник

Читайте также:  Масло какао для сосудов