Сосуд для дыхательной системы

Сосуд для дыхательной системы thumbnail

Процесс дыхания, поступление кислорода в организм при вдохе и удаление из него углекислого газа и паров воды при выдохе. Строение респираторной системы. Ритмичность и различные типы дыхательного процесса. Регуляция дыхания. Разные способы дыхания.

Для нормального протекания обменных процессов в организме человека и животных в равной мере необходим как постоянный приток кислорода, так и непрерывное удаление углекислого газа, накапливающегося в ходе обмена веществ. Такой процесс называется внешним дыханием.

Дыхание – это совокупность процессов, обеспечивающих потребление организмом кислорода и выделение углекислого газа.

Таким образом, дыхание – одна из важнейших функций регулирования жизнедеятельности человеческого организма. В организме человека функцию дыхания обеспечивает дыхательная (респираторная система).

В дыхательную систему входят легкие и респираторный тракт (дыхательные пути), который, в свою очередь, включает носовые ходы, гортань, трахею, бронхи, мелкие бронхи и альвеолы (смотри рисунок 1.5.3). Бронхи разветвляются, распространяясь по всему объему легких, и напоминают крону дерева. Поэтому часто трахею и бронхи со всеми ответвлениями называют бронхиальным деревом.

Кислород в составе воздуха через носовые ходы, гортань, трахею и бронхи попадает в легкие. Концы самых мелких бронхов заканчиваются множеством тонкостенных легочных пузырьков – альвеол (смотри рисунок 1.5.3).

Альвеолы – это 500 миллионов пузырьков диаметром 0,2 мм, где происходит переход кислородом в кровь, удаление углекислого газа из крови.

Здесь и происходит газообмен. Кислород из легочных пузырьков проникает в кровь, а углекислый газ из крови – в легочные пузырьки (рисунок 1.5.4).

Рисунок 1.5.4. Легочный пузырек. Газообмен в легких

Важнейший механизм газообмена – это диффузия, при которой молекулы перемещаются из области их высокого скопления в область низкого содержания без затраты энергии (пассивный транспорт). Перенос кислорода из окружающей среды к клеткам производится путем транспорта кислорода в альвеолы, далее в кровь. Таким образом, венозная кровь обогащается кислородом и превращается в артериальную. Поэтому состав выдыхаемого воздуха отличается от состава наружного воздуха: в нем содержится меньше кислорода и больше углекислого газа, чем в наружном, и много водяных паров (смотри рисунок 1.5.4). Кислород связывается с гемоглобином, который содержится в эритроцитах, насыщенная кислородом кровь поступает в сердце и выталкивается в большой круг кровообращения. По нему кровь разносит кислород по всем тканям организма. Поступление кислорода в ткани обеспечивает их оптимальное функционирование, при недостаточном же поступлении наблюдается процесс кислородного голодания (гипоксии).

Недостаточное поступление кислорода может быть обусловлено несколькими причинами как внешними (уменьшение содержания кислорода во вдыхаемом воздухе), так и внутренними (состояние организма в данный момент времени). Пониженное содержание кислорода во вдыхаемом воздухе, так же как и увеличение содержания углекислого газа и других вредных токсических веществ наблюдается в связи с ухудшением экологической обстановки и загрязнением атмосферного воздуха. По данным экологов только 15% горожан проживают на территории с допустимым уровнем загрязнения воздуха, в большинстве же районов содержание углекислого газа увеличено в несколько раз.

При очень многих физиологических состояниях организма (подъем в гору, интенсивная мышечная нагрузка), так же как и при различных патологических процессах (заболевания сердечно-сосудистой, дыхательной и других систем) в организме также может наблюдаться гипоксия.

Природа выработала множество способов, с помощью которых организм приспосабливается к различным условиям существования, в том числе к гипоксии. Так компенсаторной реакцией организма, направленной на дополнительное поступление кислорода и скорейшее выведение избыточного количества углекислого газа из организма является углубление и учащение дыхания. Чем глубже дыхание, тем лучше вентилируются легкие и тем больше кислорода поступает к клеткам тканей.

К примеру, во время мышечной работы усиление вентиляции легких обеспечивает возрастающие потребности организма в кислороде. Если в покое глубина дыхания (объем воздуха, вдыхаемого или выдыхаемого за один вдох или выдох) составляет 0,5 л, то во время напряженной мышечной работы она увеличивается до 2-4 л в 1 минуту. Расширяются кровеносные сосуды легких и дыхательных путей (а также дыхательных мышц), увеличивается скорость тока крови по сосудам внутренних органов. Активируется работа дыхательных нейронов. Кроме того, в мышечной ткани есть особый белок (миоглобин), способный обратимо связывать кислород. 1 г миоглобина может связать примерно до 1,34 мл кислорода. Запасы кислорода в сердце составляют около 0,005 мл кислорода на 1 г ткани и этого количества в условиях полного прекращения доставки кислорода к миокарду может хватить для того, чтобы поддерживать окислительные процессы лишь в течение примерно 3-4 с.

Миоглобин играет роль кратковременного депо кислорода. В миокарде кислород, связанный с миоглобином, обеспечивает окислительные процессы в тех участках, кровоснабжение которых на короткий срок нарушается.

В начальном периоде интенсивной мышечной нагрузки увеличенные потребности скелетных мышц в кислороде частично удовлетворяются за счет кислорода, высвобождающегося миоглобином. В дальнейшем возрастает мышечный кровоток, и поступление кислорода к мышцам вновь становится адекватным.

Все эти факторы, включая усиление вентиляции легких, компенсируют кислородный “долг”, который наблюдается при физической работе. Естественно, увеличению доставки кислорода к работающим мышцам и удалению углекислого газа способствует согласованное увеличение кровообращения в других системах организма.

Саморегуляция дыхания. Организм осуществляет тонкое регулирование содержания кислорода и углекислого газа в крови, которое остается относительно постоянным, несмотря на колебания количества поступающего кислорода и потребности в нем. Во всех случаях регуляция интенсивности дыхания направлена на конечный приспособительный результат – оптимизацию газового состава внутренней среды организма.

Частота и глубина дыхания регулируются нервной системой – ее центральными (дыхательный центр) и периферическими (вегетативными) звеньями. В дыхательном центре, расположенном в головном мозге, имеются центр вдоха и центр выдоха.

Дыхательный центр представляет совокупность нейронов, расположенных в продолговатом мозге центральной нервной системы.

При нормальном дыхании центр вдоха посылает ритмические сигналы к мышцам груди и диафрагме, стимулируя их сокращение. Ритмические сигналы образуются в результате спонтанного образования электрических импульсов нейронами дыхательного центра.

Сокращение дыхательных мышц приводит к увеличению объема грудной полости, в результате чего воздух входит в легкие. По мере увеличения объема легких возбуждаются рецепторы растяжения, расположенные в стенках легких; они посылают сигналы в мозг – в центр выдоха. Этот центр подавляет активность центра вдоха, и поток импульсных сигналов к дыхательным мышцам прекращается. Мышцы расслабляются, объем грудной полости уменьшается, и воздух из легких вытесняется наружу (смотри рисунок 1.5.5).

Рисунок 1.5.5. Регуляция дыхания

Процесс дыхания, как уже отмечалось, состоит из легочного (внешнего) дыхания, а также транспорта газа кровью и тканевого (внутреннего) дыхания. Если клетки организма начинают интенсивно использовать кислород и выделять много углекислого газа, то в крови повышается концентрация угольной кислоты. Кроме того, увеличивается содержание молочной кислоты в крови за счет усиленного образования ее в мышцах. Данные кислоты стимулируют дыхательный центр, и частота и глубина дыхания увеличиваются. Это еще один уровень регуляции. В стенках крупных сосудов, отходящих от сердца, имеются специальные рецепторы, реагирующие на понижение уровня кислорода в крови. Эти рецепторы также стимулируют дыхательный центр, повышая интенсивность дыхания. Данный принцип автоматической регуляции дыхания лежит в основе бессознательного управления дыханием, что позволяет сохранить правильную работу всех органов и систем независимо от условий, в которых находится организм человека.

Ритмичность дыхательного процесса, различные типы дыхания. В норме дыхание представлено равномерными дыхательными циклами “вдох – выдох” до 12-16 дыхательных движений в минуту. В среднем такой акт дыхания совершается за 4-6 с. Акт вдоха проходит несколько быстрее, чем акт выдоха (соотношение длительности вдоха и выдоха в норме составляет 1:1,1 или 1:1,4). Такой тип дыхания называется эйпноэ (дословно – хорошее дыхание). При разговоре, приеме пищи ритм дыхания временно меняется: периодически могут наступать задержки дыхания на вдохе или на выходе (апноэ). Во время сна также возможно изменение ритма дыхания: в период медленного сна дыхание становится поверхностным и редким, а в период быстрого – углубляется и учащается. При физической нагрузке за счет повышенной потребности в кислороде возрастает частота и глубина дыхания, и, в зависимости от интенсивности работы, частота дыхательных движений может достигать 40 в минуту.

Читайте также:  Питание для восстановления эластичности сосудов

При смехе, вздохе, кашле, разговоре, пении происходят определенные изменения ритма дыхания по сравнению с так называемым нормальным автоматическим дыханием. Из этого следует, что способ и ритм дыхания можно целенаправленно регулировать с помощью сознательного изменения ритма дыхания.

Человек имеет возможность, сознательно управлять дыханием.

Человек рождается уже с умением использовать лучший способ дыхания. Если проследить как дышит ребенок, становится заметным, что его передняя брюшная стенка постоянно поднимается и опускается, а грудная клетка остается практически неподвижной. Он “дышит” животом – это так называемый диафрагмальный тип дыхания.

Диафрагма – это мышца, разделяющая грудную и брюшную полости.Сокращения данной мышцы способствуют осуществлению дыхательных движений: вдоха и выдоха.

В повседневной жизни человек не задумывается о дыхании и вспоминает о нем, когда по каким-то причинам становится трудно дышать. Например, в течение жизни напряжение мышц спины, верхнего плечевого пояса, неправильная осанка приводят к тому, что человек начинает “дышать” преимущественно только верхними отделами грудной клетки, при этом объем легких задействуется всего лишь на 20%. Попробуйте положить руку на живот и сделать вдох. Заметили, что рука на животе практически не изменила своего положения, а грудная клетка поднялась. При таком типе дыхания человек задействует преимущественно мышцы грудной клетки (грудной тип дыхания) или области ключиц (ключичное дыхание). Однако как при грудном, так и при ключичном дыхании организм снабжается кислородом в недостаточной степени.

Недостаток поступления кислорода может возникнуть также при изменении ритмичности дыхательных движений, то есть изменении процессов смены вдоха и выдоха.

В состоянии покоя кислород относительно интенсивно поглощается миокардом, серым веществом головного мозга (в частности, корой головного мозга), клетками печени и корковым веществом почек; клетки скелетной мускулатуры, селезенка и белое вещество головного мозга потребляют в состоянии покоя меньший объем кислорода, то при физической нагрузке потребление кислорода миокардом увеличивается в 3-4 раза, а работающими скелетными мышцами – более чем в 20-50 раз по сравнению с покоем.

Интенсивное дыхание, состоящее в увеличении скорости дыхания или его глубины (процесс называется гипервентиляцией), приводит к увеличению поступления кислорода через воздухоносные пути. Однако частая гипервентиляция способна обеднить ткани организма кислородом. Частое и глубокое дыхание приводит к уменьшению количества углекислоты в крови (гипокапнии) и защелачиванию крови – респираторному алкалозу.

Подобный эффект прослеживается, если нетренированный человек осуществляет частые и глубокие дыхательные движения в течение короткого времени. Наблюдаются изменения со стороны как центральной нервной системы (возможно появление головокружения, зевоты, мелькания “мушек” перед глазами и даже потери сознания), так и сердечно-сосудистой системы (появляется одышка, боль в сердце и другие признаки). В основе данных клинических проявлений гипервентиляционного синдрома лежат гипокапнические нарушения, приводящие к уменьшению кровоснабжения головного мозга. В норме у спортсменов в покое после гипервентиляции наступает состояние сна.

Следует отметить, что эффекты, возникающие при гипервентиляции, остаются в то же время физиологичными для организма – ведь на любое физическое и психоэмоциональное напряжение организм человека в первую очередь реагирует изменением характера дыхания.

При глубоком, медленном дыхании (брадипноэ) наблюдается гиповентиляционный эффект. Гиповентиляция – поверхностное и замедленное дыхание, в результате которого в крови отмечается понижение содержание кислорода и резкое увеличение содержания углекислого газа (гиперкапния).

Количество кислорода, которое клетки используют для окислительных процессов, зависит от насыщенности крови кислородом и степени проникновения кислорода из капилляров в ткани.Снижение поступления кислорода приводит к кислородному голоданию и к замедлению окислительных процессов в тканях.

В 1931 году доктор Отто Варбург получил Нобелевскую премию в области медицины, открыв одну из возможных причин возникновения рака. Он установил, что возможной причиной этого заболевания является недостаточный доступ кислорода к клетке.

Используя простые рекомендации, а также различные физические упражнения, можно повысить доступ кислорода к тканям.

  • Правильное дыхание, при котором воздух, проходящий через воздухоносные пути, в достаточной степени согревается, увлажняется и очищается – это спокойное, ровное, ритмичное, достаточной глубины.
  • Во время ходьбы или выполнения физических упражнений следует не только сохранять ритмичность дыхания, но и правильно сочетать ее с ритмом движения (вдох на 2-3 шага, выдох на 3-4 шага).
  • Важно помнить, что потеря ритмичности дыхания приводит к нарушению газообмена в легких, утомлению и развитию других клинических признаков недостатка кислорода.
  • При нарушении акта дыхания уменьшается приток крови к тканям и понижается насыщение ее кислородом.

Необходимо помнить, что физические упражнения способствуют укреплению дыхательной мускулатуры и усиливают вентиляцию легких. Таким образом, от правильного дыхания в значительной мере зависит здоровье человека.

Источник

Дыхательная система человека – совокупность органов и тканей, обеспечивающих в организме человека обмен газов между кровью и внешней средой.

Функция дыхательной системы:

  • поступление в организм кислорода;

  • выведение из организма углекислого газа;

  • выведение из организма газообразных продуктов метаболизма;

  • терморегуляция;

  • синтетическая: в тканях лёгких синтезируются некоторые биологически активные вещества: гепарин, липиды и др.;

  • кроветворная: в лёгких созревают тучные клетки и базофилы;

  • депонирующая: капилляры лёгких могут накапливать большое количество крови;

  • всасывательная: с поверхности лёгких легко всасываются эфир, хлороформ, никотин и многие другие вещества.

Дыхательная система состоит из лёгких и дыхательных путей.

Лёгочные сокращения осуществляются с помощью межрёберных мышц и диафрагмы.

Дыхательные пути: носовая полость, глотка, гортань, трахея, бронхи и бронхиолы.

Лёгкие состоят из лёгочных пузырьков – альвеол.

Сосуд для дыхательной системы

Рис. Дыхательная система

дыхательные пути

носовая полость

Полости носа и глотки являются верхними дыхательными путями. Нос образован системой хрящей, благодаря которым носовые ходы всегда открыты. В самом начале носовых ходов располагаются мелкие волоски, которые задерживают крупные пылевые частицы вдыхаемого воздуха.

Носовая полость выстлана изнутри слизистой оболочкой, пронизанной кровеносными сосудами. Она содержит большое количество слизистых желез (150 желез/ с м слизистой оболочки). Слизь препятствует размножению микробов. Из кровеносных капилляров на поверхность слизистой оболочки выходит большое количество лейкоцитов-фагоцитов, которые уничтожают микробную флору.

Кроме того, слизистая оболочка может значительно изменяться в своем объёме. Когда стенки её сосудов сокращаются, она сжимается, носовые ходы расширяются, и человек легко и свободно дышит.

Слизистая оболочка верхних дыхательных путей образована мерцательным эпителием. Движение ресничек отдельной клетки и всего эпителиального пласта строго координировано: каждая предыдущая ресничка в фазах своего движения опережает на определённый промежуток времени последующую, поэтому поверхность эпителия волнообразно подвижна – «мерцает». Движение ресничек помогает сохранять дыхательные пути в чистоте, удаляя вредные вещества.

Сосуд для дыхательной системы

Рис. 1. Мерцательный эпителий дыхательной системы

В верхней части носовой полости находятся органы обоняния.

Функция носовых ходов:

  • фильтрация микроорганизмов;

  • фильтрация пыли;

  • увлажнение и согревание вдыхаемого воздуха;

  • слизь смывает все отфильтрованное в желудочно-кишечный тракт.

Читайте также:  Как проверить работу сосудов

Полость разделена решётчатой костью на две половины. Костные пластинки разделяют обе половины на узкие, сообщающиеся между собой ходы.

В полость носа открываются пазухи воздухоносных костей: гайморова, лобная и др. Эти пазухи называются придаточными пазухами носа. Они выстланы тонкой слизистой оболочкой, содержащей небольшое количество слизистых желез. Все эти перегородки и раковины, а также многочисленные придаточные полости черепных костей резко увеличивают объём и поверхность стенок носовой полости.

Придаточные пазухи носа (околоносовые синусы) – воздухоносные полости в костях черепа, сообщающиеся с полостью носа.

У человека различают четыре группы придаточных пазух носа:

  • верхнечелюстная (гайморова) пазуха – парная пазуха, расположенная в верхней челюсти;

  • лобная пазуха – парная пазуха, расположенная в лобной кости;

  • решётчатый лабиринт – парная пазуха, образованная ячейками решётчатой кости;

  • клиновидная (основная) – парная пазуха, расположенная в теле клиновидной (основной) кости.

Сосуд для дыхательной системы

Рис. 2. Околоносовые пазухи: 1 – лобные пазухи; 2 – ячейки решётчатого лабиринта; 3 – клиновидная пазуха; 4 – верхнечелюстные (гайморовы) пазухи.

До сих пор точно не известно значение околоносовых пазух.

Возможные функции околоносовых пазух:

  • уменьшение массы передних лицевых костей черепа;

  • голосовые резонаторы;

  • механическая защита органов головы при ударах (амортизация);

  • термоизоляция корней зубов, глазных яблок и т. п. от температурных колебаний в полости носа при дыхании;

  • увлажнение и согревание вдыхаемого воздуха благодаря медленному воздушному потоку в пазухах;

  • выполняют функцию барорецепторного органа (дополнительный орган чувств).

Гайморова пазуха (верхнечелюстная пазуха) – парная придаточная пазуха носа, занимающая практически всё тело верхнечелюстной кости. Изнутри пазуха выстлана тонкой слизистой оболочкой из мерцательного эпителия. В слизистой оболочке пазухи очень мало железистых (бокаловидных) клеток, сосудов и нервов.

Верхнечелюстная пазуха сообщается с полостью носа через отверстия на внутренней поверхности верхнечелюстной кости. В нормальном состоянии пазуха заполнена воздухом.

Далее ходы открываются двумя носоглоточными отверстиями (хоанами) в глотку, расположенную позади носовой и ротовой полости.

Нижняя часть глотки переходит в две трубки: дыхательную (спереди) и пищевод (сзади). Таким образом, глотка является общим отделом для пищеварительной и дыхательной системы.

Гортань

Верхнюю часть дыхательной трубки составляет гортань, расположенная в передней части шеи. Большая часть гортани также выстлана слизистой оболочкой из мерцательного (ресничного) эпителия.

Гортань состоит из подвижно соединённых между собой хрящей: перстневидного, щитовидного (образует кадык, или адамово яблоко) и двух черпаловидных хрящей.

Надгортанник прикрывает вход в гортань в момент глотания пищи. Передним концом надгортанник соединён с щитовидным хрящом.

Сосуд для дыхательной системы

Рис. Гортань

Хрящи гортани соединены между собой суставами, а промежутки между хрящами затянуты соединительнотканными перепонками.

В гортани находятся голосовой аппарат, состоящий из голосовых связок и голосовых мышц; их функция – голосообразование.

Сосуд для дыхательной системы

Рис. Голосовой аппарат

Голосовые связки покрыты многослойным плоским эпителием и слизистых желез не имеют. Увлажнение голосовых связок происходит благодаря оттеканию слизи из вышележащих отделов.

Голосовые связки состоят из эластических волокон и мышечной ткани, составляющей голосовую мышцу. Эта пара связок превращает отверстие гортани в узкую голосовую щель.

Толщина, длина и натяжение голосовых связок при помощи мышц могут изменяться. Все сложные движения гортани, связанные с речью и голосом, обеспечиваются деятельностью 16 разных мышц.

При обыкновенном спокойном дыхании голосовая щель умеренно расширена, связки почти неподвижны и при вдыхании и выдыхании не напряжены, поэтому воздух проходит из лёгких мимо них совершенно беззвучно.

При произношении звука голосовые связки сближаются до соприкосновения. Током сжатого воздуха из лёгких, надавливающим на них снизу, они на миг раздвигаются, после чего благодаря своей эластичности опять закрываются, пока напор воздуха не откроет их снова.

Возникающие таким образом колебания голосовых связок и дают звучание голоса. Высота звука регулируется степенью натяжения голосовых связок. Оттенки голоса зависят как от длины и толщины голосовых связок, так и от строения полости рта и полости носа, которые играют роль резонаторов.

К гортани снаружи прилегает щитовидная железа.

Спереди гортань защищена передними мышцами шеи.

Трахея и бронхи

Трахея – дыхательная трубка длиной около 12 см.

Она составлена из 16−20 хрящевых полуколец, которые не смыкаются сзади; полукольца предотвращают спадание трахеи во время выдоха.

Задняя часть трахеи и промежутки между хрящевыми полукольцами затянуты соединительнотканной перепонкой. Позади трахеи лежит пищевод, стенка которого во время прохождения пищевого комка слегка выпячивается в её просвет.

Сосуд для дыхательной системы

Рис. Поперечный срез трахеи: 1 – мерцательный эпителий; 2 – собственный слой слизистой оболочки; 3 – хрящевое полукольцо; 4 – соединительнотканная перепонка

На уровне IV−V грудных позвонков трахея делится на два крупных первичных бронха, отходящих в правое и левое лёгкие. Это место деления носит название бифуркации (разветвления).

Через левый бронх перегибается дуга аорты, а правый огибается идущей сзади наперёд непарной веной. По выражению старых анатомов, «дуга аорты сидит верхом на левом бронхе, а непарная вена – на правом».

Хрящевые кольца, расположенные в стенках трахеи и бронхах, делают эти трубки упругими и неспадающимися, благодаря чему воздух по ним проходит легко и беспрепятственно. Внутренняя поверхность всего дыхательного пути (трахеи, бронхов и части бронхиол) покрыта слизистой оболочкой из многорядного мерцательного эпителия.

Устройство дыхательных путей обеспечивает согревание, увлажнение и очищение поступающего со вдохом воздуха. Частицы пыли мерцательным эпителием продвигаются кверху и с кашлем и чиханием удаляются наружу. Микробы обезвреживаются лимфоцитами слизистой оболочки.

лЁгкие

Лёгкие (правое и левое) находятся в грудной полости под защитой грудной клетки.

Плевра

Лёгкие покрыты плеврой.

Плевра – тонкая, гладкая и влажная, богатая эластическими волокнами серозная оболочка, одевающая каждое из лёгких.

Различают лёгочную плевру, плотно срощенную с тканью лёгкого, и пристеночную плевру, выстилающую изнутри стенки грудной клетки.

У корней лёгких лёгочная плевра переходит в пристеночную. Таким образом, вокруг каждого лёгкого образуется герметически замкнутая плевральная полость, представляющая узкую щель между лёгочной и пристеночной плеврой. Плевральная полость заполнена небольшим количеством серозной жидкости, играющей роль смазки, облегчающей дыхательные движения лёгких.

Сосуд для дыхательной системы

Рис. Плевра

средостение

Средостение – пространство между правым и левым плевральными мешками. Оно ограничено спереди грудиной с реберными хрящами, сзади – позвоночником.

В средостении располагаются сердце с крупными сосудами, трахея, пищевод, вилочковая железа, нервы диафрагмы и грудной лимфатический проток.

бронхиальное дерево

Глубокими бороздами правое лёгкое разделено на три доли, а левое – на две. У левого лёгкого на стороне, обращённой к срединной линии, имеется углубление, которым оно прилежит к сердцу.

В каждое лёгкое с внутренней стороны входят толстые пучки, состоящие из первичного бронха, лёгочной артерии и нервов, а выходят по две лёгочные вены и лимфатические сосуды. Все эти бронхиально-сосудистые пучки, вместе взятые, образуют корень лёгкого. Вокруг лёгочных корней расположено большое количество бронхиальных лимфатических узлов.

Входя в лёгкие, левый бронх делится на две, а правый – на три ветви по числу лёгочных долей. В лёгких бронхи образуют так называемое бронхиальное дерево. С каждой новой «веточкой» диаметр бронхов уменьшается, пока они не становятся совсем микроскопическими бронхиолами с диаметром в 0,5 мм. В мягких стенках бронхиол имеются гладкие мышечные волокна и нет хрящевых полуколец. Таких бронхиол насчитывается до 25 млн.

Сосуд для дыхательной системы

Рис. Бронхиальное дерево

Бронхиолы переходят в ветвистые альвеолярные ходы, которые оканчиваются лёгочными мешочками, стенки которых усыпаны вздутиями – лёгочными альвеолами. Стенки альвеол пронизаны сетью капилляров: в них происходит газообмен.

Альвеолярные ходы и альвеолы обвиты множеством упругих соединительнотканных и эластических волокон, которые составляют также основу мельчайших бронхов и бронхиол, благодаря чему лёгочная ткань легко растягивается во время вдоха и снова спадается во время выдоха.

Читайте также:  Сосуды под давлением баллон с пропаном

альвеолы

Альвеолы образованы сетью тончайших эластических волокон. Внутренняя поверхность альвеол выстлана однослойным плоским эпителием. Стенки эпителия вырабатывают сурфактант – поверхностно-активное вещество, выстилающее изнутри альвеолы и препятствующее их спаданию.

Под эпителием лёгочных пузырьков залегает густая сеть капилляров, на которые разбиваются конечные ветви лёгочной артерии. Через соприкасающиеся стенки альвеол и капилляров происходит газообмен при дыхании. Попав в кровь, кислород связывается с гемоглобином и разносится по всему организму, снабжая клетки и ткани.

Сосуд для дыхательной системы

Рис. Альвеолы

Сосуд для дыхательной системы

Рис. Газообмен в альвеолах

До рождения плод через лёгкие не дышит и лёгочные пузырьки находятся в спавшемся состоянии; после рождения с первым же вдохом альвеолы раздуваются и остаются расправленными на всю жизнь, сохраняя в себе некоторое количество воздуха даже при самом глубоком выдохе.

Полнота газообмена обеспечивается огромной поверхностью, через которую он происходит. Каждый лёгочный пузырёк представляет собой эластический мешочек размером 0,25 миллиметра. Количество же лёгочных пузырьков в обоих лёгких достигает 350 млн. Если представить, что все лёгочные альвеолы растянуты и образуют один пузырь с гладкой поверхностью, то диаметр этого пузыря будет равен 6 м, его вместимость будет более м , а внутренняя поверхность составит м и, таким образом, будет приблизительно в 56 раз больше всей кожной поверхности тела человека.

Трахея и бронхи в дыхательном газообмене не участвуют, а являются только воздухопроводящими путями.

физиология дыхания

Все процессы жизнедеятельности протекают при обязательном участии кислорода, т. е. являются аэробными. Особенно чувствительной к кислородной недостаточности является ЦНС, и прежде всего корковые нейроны, которые в бескислородных условиях погибают раньше других. Как известно, период клинической смерти не должен превышать пяти минут. В противном случае в нейронах коры головного мозга развиваются необратимые процессы.

Дыхание – физиологический процесс обмена газов в лёгких и тканях.

Весь процесс дыхания можно разделить на три основных этапа:

  • лёгочное (внешнее) дыхание: газообмен в капиллярах лёгочных пузырьков;

  • транспорт газов кровью;

  • клеточное (тканевое) дыхание: газообмен в клетках (ферментативное окисление питательных веществ в митохондриях).

Сосуд для дыхательной системы

Рис. Лёгочное и тканевое дыхание

Эритроциты содержат гемоглобин, сложный железосодержащий белок. Этот белок способен присоединять к себе кислород и углекислый газ.

Проходя по капиллярам лёгких, гемоглобин присоединяет к себе 4 атома кислорода, превращаясь в оксигемоглобин. Эритроциты транспортируют кислород из лёгких в ткани организма. В тканях происходит освобождение кислорода (оксигемоглобин превращается в гемоглобин) и присоединение углекислого газа (гемоглобин превращается в карбогемоглобин). Далее эритроциты транспортируют углекислый газ к лёгким для удаления из организма.

Сосуд для дыхательной системы

Рис. Транспортная функция гемоглобина

Молекула гемоглобина образует стойкое соединение с оксидом углерода II (угарным газом). Отравление угарным газом приводит к гибели организма в связи с кислородной недостаточностью.

механизм вдоха и выдоха

Вдох – является активным актом, так как осуществляется при помощи специализированных дыхательных мышц.

К дыхательным мышцам относятся межрёберные мышцы и диафрагма. При глубоком вдохе используются мышцы шеи, груди и пресса.

Сами лёгкие мышц не имеют. Они не способны самостоятельно растягиваться и сокращаться. Лёгкие лишь следуют за грудной клеткой, которая расширяется благодаря диафрагме и межрёберным мышцам.

Сосуд для дыхательной системы

Диафрагма во время вдоха опускается на 3−4 см, вследствие чего объём грудной клетки увеличивается на 1000−1200 мл. Кроме того, диафрагма отодвигает нижние рёбра к периферии, что также ведёт к увеличению ёмкости грудной клетки. Причём чем сильнее сокращения диафрагмы, тем больше увеличивается объём грудной полости.

Межрёберные мышцы, сокращаясь, приподнимают рёбра, что также вызывает увеличение объёма грудной клетки.

Лёгкие, следуя за растягивающейся грудной клеткой, сами растягиваются, и давление в них падает. В результате создаётся разность между давлением атмосферного воздуха и давлением в лёгких, воздух устремляется в них – происходит вдох.

Выдох, в отличие от вдоха, является пассивным актом, так как в его осуществлении не принимают участие мышцы. При расслаблении межрёберных мышц рёбра под действием силы тяжести опускаются; диафрагма, расслабляясь, поднимается, занимая свое привычное положение, и объём грудной полости уменьшается – лёгкие сокращаются. Происходит выдох.

Лёгкие находятся в герметически закрытой полости, образованной лёгочной и пристеночной плеврой. В плевральной полости давление ниже атмосферного («отрицательное»). За счёт отрицательного давления лёгочная плевра плотно прижимается к пристеночной.

Уменьшение давления в плевральном пространстве является основной причиной увеличения объёма лёгких во время вдоха, то есть является той силой, которая и растягивает лёгкие. Так, во время увеличения объёма грудной клетки давление в межплевральном образовании уменьшается, и вследствие разности давлений воздух активно поступает в лёгкие и увеличивает их объём.

Во время выдоха давление в плевральной полости возрастает, и в силу разности давлений воздух выходит, лёгкие спадаются.

Грудное дыхание осуществляется преимущественно за счёт наружных межрёберных мышц.

Брюшное дыхание осуществляется за счёт диафрагмы.

У мужчин отмечается брюшной тип дыхания, а у женщин – грудной. Однако независимо от этого и мужчины, и женщины дышат ритмично. С первого часа жизни ритм дыхания не нарушается, изменяется лишь его частота.

Новорождённый ребёнок дышит 60 раз в минуту, у взрослого человека частота дыхательных движений в покое составляет около 16−18. Однако во время физической нагрузки, эмоционального возбуждения или при повышении температуры тела частота дыхания может значительно увеличиваться.

Жизненная Ёмкость лЁгких

Жизненная ёмкость лёгких (ЖЕЛ) – это максимальное количество воздуха, которое может поступить и вывестись из лёгких во время максимального вдоха и выдоха.

Жизненная емкость лёгких определяется прибором спирометром.

У взрослого здорового человека ЖЕЛ меняется в пределах от 3500 до 7000 мл и зависит от пола и от показателей физического развития: например, объема грудной клетки.

ЖЕЛ состоит из нескольких объемов:

  1. Дыхательный объем (ДО) – это количество воздуха, которое поступает и выводится из лёгких при спокойном дыхании (500-600 мл).

  2. Резервный объем вдоха (РОВ) – это максимальное количество воздуха, которое может поступить в лёгкие после спокойного вдоха (1500 – 2500 мл).

  3. Резервный объем выдоха (РОВ) – это максимальное количество воздуха, которое может вывестись из лёгких после спокойного выдоха(1000 – 1500 мл).

регуляция дыхания

Дыхание регулируется нервными и гуморальными механизмами, которые сводятся к обеспечению ритмической деятельности дыхательной системы (вдох, выдох) и адаптационных дыхательных рефлексов, то есть изменению частоты и глубины дыхательных движений, имеющих место при изменяющихся условиях внешней среды или внутренней среды организма.

Ведущим дыхательным центром, как было установлено Н. А. Миславским в 1885 году, является дыхательный центр, расположенный в области продолговатого мозга.

Дыхательные центры обнаружены в области гипоталамуса. Они принимают участие в организации более сложных адаптационных дыхательных рефлексов, необходимых при изменении условий существования организма. Кроме того, дыхательные центры размещаются и в коре головного мозга, осуществляя высшие формы адаптационных процессов. Наличие дыхательных центров в коре головного мозга доказывается образованием дыхательных условных рефлексов, изменениями частоты и глубины дыхательных движений, имеющих место при различных эмоциональных состояниях, а также произвольными изменениями дыхания.

Вегетатвная нервная система иннервирует стенки бронхов. Их гладкая мускулатура снабжена центробежными волокнами блуждающих и симпатических нервов. Блуждающие нервы вызывают сокращение бронхиальной мускулатуры и сужение бронхов, а симпатические нервы расслабляют бронхиальную мускулатуру и расширяют бронхи.

Гуморальная регуляц