Сосуд с поршнем нагрели

Сосуд с поршнем нагрели thumbnail

Решение задач по химии на основные газовые законы

Задача 28.

При 17°С некоторое количество газа занимает объем 580 мл. Какой объем займет это же количество газа при 100°С, если давление его останется неизменным?

Решение:

По закону Гей – Люссака при постоянном давлении объём газа изменяется прямо пропорционально абсолютной температуре (Т):

V2 – искомый объём газа;

T2 – соответствующая V2 температура;

V1 – начальный объём газа при соответствующей температуре Т1.

По условию задачи V1 = 580мл; Т1 = 290К (273 + 17 = 290) и Т2 = 373К (273 + 100 = 373). Подставляя эти значения в выражение закона Гей – Люссака, получим:

Ответ: V2 = 746мл.

Задача 29.

Давление газа, занимающего объем 2,5л, равно 121,6 кПа (912мм рт. ст.). Чему будет равно давление, если, не изменяя температуры, сжать газ до объема в 1л?

Решение:

Согласно закону Бойля – Мариотта, при постоянной температуре давление, производимое данной массой газа, обратно пропорционально объёму газа:

Обозначив искомое давление газа через Р2, можно записать:

Ответ: Р2 = 304кПа (2280мм.рт.ст.).

Задача 30. На сколько градусов надо нагреть газ, находящийся в закрытом сосуде при 0 °С, чтобы давление его увеличилось вдвое?

Решение:

При постоянном объёме давление газа изменяется прямо пропорционально температуре:

По условию задачи Т1 = 0 °С + 273 = 273К; давление возросло в два раза: Р2 = 2Р1.

Подставляя эти значения в уравнение, находим:

Ответ: Газ нужно нагреть на 273 0 С.

Задача 31.

При 27°С и давлении 720 мм.рт. ст. объем газа равен 5л. Кой объем займет это же количество газа при 39°С и давлении 104кПа?

Решение:

Зависимость между объёмом газа, давлением и температурой выражается общим уравнением, объединяющим законы Гей-Люссака и Бойля-Мариотта:

где Р и V – давление и объём газа при температуре Т; Р и V – давление и объём газа при нормальных условиях. Данные задачи: V = 5л; Т = 298К (273 + 25 = 298); Р = 720 мм.рт.ст. (5,99 кПа); Р = 104 кПа; Т = 312К (273 + 39 = 312); Т = 273К. Подставляя данные задачи в уравнение, получим:

Задача 32.

При 7°С давление газа в закрытом сосуде равно 96,0 кПа. Каким станет давление, если охладить сосуд до -33 °С?

Решение:

При постоянном объёме давление газа изменяется прямо пропорционально абсолютной температуре:

Обозначим искомое давление через Р2, а соответствующую ему температуру через Т2. По условию задачи Р1 = 96,0 кПа; Т1 = 280К (273 + 7 = 280); Т2 = 240К (273 – 33 = 240). Подставляя эти значения в уравнение, получим:

Ответ: Р2 = 82,3кПа.

Задача 33.

При нормальных условиях 1г воздуха занимает объем 773 мл. Какой объем займет та же масса воздуха при 0 °С и )и давлении, равном 93,3 кПа (700мм. рт. ст.)?

Решение:

Зависимость между объёмом газа, давлением и температурой выражается общим уравнением, объединяющим законы Гей-Люссака и Бойля-Мариотта:

где Р и V – давление и объём газа при температуре Т; Р и V – давление и объём газа при нормальных условиях. Данные задачи: Р = 101,325кПа; V = 773мл; Т = 298К (273 + 25 = 298); Т = 273К; Р = 93,3кПа. Подставляя данные задачи и преобразуя уравнение, получим:

Ответ: V = 769, 07 мл.

Задача 34.

Давление газа в закрытом сосуде при 12°С равно 100 кПа (750мм рт. ст.). Каким станет давление газа, если нагреть сосуд до 30°С?

Решение:

При постоянном объёме давление газа изменяется прямо пропорционально абсолютной температуре:

Обозначим искомое давление через Р2, а соответствующую ему температуру через Т2. По условию задачи Р1 = 100 кПа; Т1 = 285К (273 + 12 = 285); Т2 = 303К (273 + 30 = 303). Подставляя эти значения в уравнение, получим:

Ответ: Р2 = 106,3кПа.

Задача 35.

В стальном баллоне вместимостью 12л находится при 0°С кислород под давлением 15,2 МПа. Какой объем кислорода, находящегося при нормальных условиях можно получить из такого баллона?

Решение:

Зависимость между объёмом газа, давлением и температурой выражается общим уравнением, объединяющим законы Гей-Люссака и Бойля-Мариотта:

где Р и V – давление и объём газа при температуре Т; Р и V – давление и объём газа при нормальных условиях. Данные задачи: V = 12л; Т = 273К (273 + 0 = 2273); Р =15,2МПа); Р = 101,325кПа; Т = 298К (273 + 25 = 298). Подставляя данные задачи в уравнение, получим:

Ответ: V = 1,97м 3 .

Задача 36.

Температура азота, находящегося в стальном баллоне под давлением 12,5 МПа, равна 17°С. Предельное давление для баллона 20,3МПа. При какой температуре давление азота достигнет предельного значения?

Решение:

При постоянном объёме давление газа изменяется прямо пропорционально абсолютной температуре:

Обозначим искомое давление через Р2, а соответствующую ему температуру через Т2. По условию задачи Р1 = 12,5МПа; Т1 = 290К (273 + 17 = 290); Р2 = 20,3МПа. Подставляя эти значения в уравнение, получим:

Задача 37.

При давлении 98,7кПа и температуре 91°С некоторое количество газа занимает объем 680 мл. Найти объем газа при нормальных условиях.

Решение:

Зависимость между объёмом газа, давлением и температурой выражается общим уравнением, объединяющим законы Гей-Люссака и Бойля-Мариотта:

где Р и V – давление и объём газа при температуре Т; Р и V – давление и объём газа при нормальных условиях. Данные задачи: Р = 101,325кПа; V = 680мл; Т = 298К (273 + 25 = 298); Т = 364К (273 + 91 = 364); Р = 98,7кПа. Подставляя данные задачи и преобразуя уравнение, получим:

Ответ: V = 542,3мл.

Задача 38.

При взаимодействии 1,28г металла с водой выделилось 380 мл водорода, измеренного при 21°С и давлении 104,5кПа (784мм рт. ст.). Найти эквивалентную массу металла.

Решение:

Находим объём выделившегося водорода при нормальных условиях, используя уравнение:

где Р и V – давление и объём газа при температуре Т = 294К (273 +21 = 294); Р = 101,325кПа; Т = 273К; Р = 104,5кПа. Подставляя данные задачи в уравнение,

Согласно закону эквивалентов, массы (объёмы) реагирующих друг с другом веществ m1 и m2 пропорциональны их эквивалентным массам (объёмам):

Читайте также:  Лекарства укрепляющие костную ткань связки сухожилия и сосуды

Мольный объём любого газа при н.у. равен 22,4л. Отсюда эквивалентный объём водорода равен 22,4 : 2 = 11,2л или 11200 мл. Тогда, используя формулу закона эквивалентов, рассчитаем эквивалентную массу металла:

Ответ: mЭ(Ме) = 39,4г/моль.

Задача 39.

Как следует изменить условия, чтобы увеличение массы данного газа не привело к возрастанию его объема: а) понизить температуру; б) увеличить давление; в) нельзя подобрать условий?

Решение:

Для характеристики газа количеством вещества (n, моль) применяется уравнение РV = nRT, или – это уравнение Клапейрона-Менделеева. Оно связывает массу (m, кг); температуру (Т, К); давление (Р, Па) и объём (V, м 3 ) газа с молярной массой (М, кг/моль).

Тогда из уравнения Клапейрона-Менделеева объём газа можно рассчитать по выражению:

Отсюда следует, что V = const, если при увеличении массы (m) газа на некоторую величину будет соответственно уменьшена температура (T) системы на некоторое необходимое значение. Объём системы также не изменится при постоянной температуре, если при увеличении массы (m) газа на некоторую величину будет соответственно увеличено давление (P) системы на необходимую величину.

Таким образом, при увеличении массы газа объём системы не изменится, если понизить температуру системы или же увеличить давление в ней на некоторую величину.

Ответ: а); б).

Задача 40.

Какие значения температуры и давления соответствуют нормальным условиям для газов: а) t = 25 °С, Р = 760 мм. рт. ст.; б) t = 0 °С, Р = 1,013 • 10 5 Па; в) t = 0°С, Р = 760 мм. рт. ст.?

Решение:

Состояние газа характеризуется температурой, давлением и объёмом. Если температура газа равна 0 °С (273К), а давление составляет 101325 Па (1,013 • 10 5 ) или 760 мм. рт. ст., то условия, при которых находится газ, принято считать нормальными.

Источник

Физика

Для идеального газа, находящегося в сосуде под поршнем , необходимо учитывать следующее:

  • масса газа, находящегося в сосуде под поршнем, вследствие изменения термодинамических параметров газа не изменяется:
  • постоянным остается также количество вещества (газа):
  • плотность газа и концентрация его молекул (атомов) изменяются:

Пусть изменение состояния идеального газа, находящегося в цилиндрическом сосуде под поршнем, вызвано действием на поршень внешней силы F → (рис. 5.9).

Начальное и конечное состояния газа в сосуде под поршнем описываются следующими уравнениями:

p 1 V 1 = ν R T 1 , p 2 V 2 = ν R T 2 , >

где p 1 , V 1 , T 1 – давление, объем и температура газа в начальном состоянии; p 2 , V 2 , T 2 – давление, объем и температура газа в конечном состоянии; ν – количество вещества (газа); R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К).

Условия равновесия поршня, закрывающего идеальный газ в сосуде (см. рис. 5.9), в начале процесса и в конце процесса выглядят следующим образом:

M g + F A = F 1 , M g + F A + F = F 2 , >

где M – масса поршня; g – модуль ускорения свободного падения; F A – модуль силы атмосферного давления, F A = p A S ; p A – атмосферное давление; S – площадь сечения поршня; F 1 – модуль силы давления газа на поршень в начале процесса, F 1 = p 1 S ; p 1 – давление газа в сосуде в начальном состоянии; F – модуль силы, вызывающей сжатие газа; F 2 – модуль силы давления газа на поршень в конце процесса, F 2 = p 2 S ; p 2 – давление газа в сосуде в конечном состоянии.

Температура идеального газа, находящегося в сосуде под поршнем, может как изменяться, так и оставаться неизменной:

  • если процесс движения поршня происходит достаточно быстро, то температура газа изменяется –
  • если процесс происходит медленно, то температура газа остается постоянной –

Давление идеального газа, находящегося в сосуде под поршнем, также может изменяться или оставаться неизменным:

  • если в задаче сказано, что поршень является легкоподвижным, то давление газа под поршнем – неизменно (в том случае, когда из условия задачи не следует обратное) – p = const;
  • в остальных случаях давление газа под поршнем изменяется – p ≠ const.

Масса поршня , закрывающего газ в сосуде, либо равна нулю, либо имеет отличное от нуля значение:

  • если в задаче сказано, что поршень является легким или невесомым, то масса поршня считается равной нулю –
  • в остальных случаях поршень обладает определенной ненулевой массой –

Пример 19. В вертикальном цилиндре под легкоподвижным поршнем сечением 250 мм 2 и массой 1,80 кг находится 360 см 3 газа. Атмосферное давление равно 100 кПа. На поршень поставили гири, и он сжал газ до объема 240 см 3 . Температура газа при его сжатии не изменяется. Определить массу гирь.

Решение . На рисунке показаны силы, действующие на поршень:

  • сила тяжести поршня M g → ;
  • сила атмосферного давления F → A ;
  • сила давления газа F → 1 , действующая со стороны газа (до его сжатия);
  • сила давления газа F → 2 , действующая со стороны газа (после его сжатия);
  • m g → – вес гирь.

Условие равновесия поршня запишем в следующем виде:

где F 1 – модуль силы давления газа, F 1 = p 1 S ; p 1 – давление газа до сжатия; S – площадь поршня; Mg – модуль силы тяжести поршня; M – масса поршня; F A – модуль силы атмосферного давления, F A = p A S ; p A – атмосферное давление; g – модуль ускорения свободного падения;

где F 2 – модуль силы давления газа, F 2 = p 2 S ; p 2 – давление газа после сжатия; mg – вес гирь; m – масса гирь.

Считая процесс сжатия газа изотермическим, запишем уравнение Менделеева – Клапейрона для газа под поршнем следующим образом:

где V 1 – первоначальный объем газа под поршнем; ν – количество газа под поршнем; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T – температура газа (не изменяется в ходе процесса);

где V 2 – объем сжатого поршнем газа.

и два условия равновесия, записанные в явном виде, образуют полную систему уравнений:

p 1 S = M g + p A S , p 2 S = M g + p A S + m g , p 1 V 1 = p 2 V 2 , >

которую требуется решить относительно массы гирь m .

Для этого выразим отношение давлений p 2 / p 1 из первой пары уравнений:

p 2 p 1 = M g + p A S + m g M g + p A S

и из третьего уравнения:

запишем равенство правых частей полученных отношений:

M g + p A S + m g M g + p A S = V 1 V 2 .

Отсюда следует, что искомая масса определяется формулой

m = ( M + p A S g ) ( V 1 V 2 − 1 ) .

Вычисление дает результат:

m = ( 1,80 + 100 ⋅ 10 3 ⋅ 250 ⋅ 10 − 6 10 ) ( 360 ⋅ 10 − 6 240 ⋅ 10 − 6 − 1 ) = 2,15 кг.

Читайте также:  Охрана труда сосуды под давлением тесты

Указанное сжатие газа вызвано гирями массой 2,15 кг.

Пример 20. Открытый цилиндрический сосуд сечением 10 см 2 плотно прикрывают пластиной массой 1,2 кг. Атмосферное давление составляет 100 кПа, а температура окружающего воздуха равна 300 К. На сколько градусов нужно нагреть воздух в сосуде, чтобы он приподнял пластину?

Решение . На рисунке показаны силы, действующие на пластину после нагревания газа:

  • сила тяжести пластины M g → ;
  • сила атмосферного давления F → A ;
  • сила давления газа F → 2 , действующая на пластину со стороны нагретого газа.

Пластина находится в состоянии неустойчивого равновесия; условие равновесия пластины выглядит следующим образом:

где F 2 – модуль силы давления нагретого газа, F 2 = p 2 S ; p 2 – давление нагретого газа; S – площадь сечения сосуда; Mg – модуль силы тяжести пластины; M – масса пластины; g – модуль ускорения свободного падения; F A – модуль силы атмосферного давления, F A = p A S ; p A – атмосферное давление.

Запишем уравнение Менделеева – Клапейрона следующим образом:

  • для газа в сосуде до его нагревания

где p 1 – давление газа в сосуде до нагревания (совпадает с атмосферным давлением), p 1 = p A ; V – объем газа в сосуде; ν – количество вещества (газа) в сосуде; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1 – температура газа в сосуде до нагревания (совпадает с температурой окружающей среды);

  • для газа в сосуде после его нагревания

где p 2 – давление нагретого газа; T 2 – температура нагретого газа.

Два уравнения состояния газа (до и после нагревания) и условие равновесия пластины, записанные в явном виде, образуют полную систему уравнений:

p A V = ν R T 1 , p 2 V = ν R T 2 , p 2 S = M g + p A S ; >

систему необходимо решить относительно температуры T 2 , до которой следует нагреть газ.

Для этого делением первой пары уравнений

p A V p 2 V = ν R T 1 ν R T 2

получим выражение для давления нагретого газа:

и подставим его в третье уравнение системы:

p A T 2 S T 1 = M g + p A S .

Преобразуем полученное выражение к виду

T 2 = T 1 ( M g + p A S ) p A S = T 1 ( M g p A S + 1 ) ,

а затем найдем разность

Δ T = T 2 − T 1 = M g T 1 p A S .

Δ T = 1,2 ⋅ 10 ⋅ 300 100 ⋅ 10 3 ⋅ 10 ⋅ 10 − 4 = 36 К = 36 °С.

Пример 21. В цилиндрическом сосуде поршень массой 75,0 кг и площадью сечения 50,0 см 2 начинает двигаться вверх. Давление газа под поршнем постоянно и равно 450 кПа, атмосферное давление составляет 100 кПа. Считая, что поршень движется без трения, определить модуль скорости поршня после прохождения им 3,75 м пути.

Решение . На рисунке показаны силы, действующие на поршень:

  • сила тяжести поршня M g → ;
  • сила атмосферного давления F → A ;
  • сила давления газа F → , действующая на поршень со стороны нагретого газа.

Под действием указанных сил, направленных вверх, поршень движется с ускорением a → :

F → + F → A + M g → = m a → ,

или в проекции на вертикальную ось –

где F – модуль силы давления газа под поршнем, F = pS ; p – давление газа; S – площадь поршня; Mg – модуль силы тяжести поршня; M – масса поршня; g – модуль ускорения свободного падения; a – модуль ускорения поршня.

Преобразуем записанное уравнение, выразив модуль ускорения и выполнив подстановку выражений для модулей сил:

a = F − F A − M g M = ( p − p A ) S M − g .

Скорость поршня, его ускорение и пройденный путь связаны между собой соотношением

где l – пройденный путь; v – модуль скорости поршня.

Выразим отсюда модуль скорости поршня:

и подставим в записанную формулу выражение для модуля ускорения:

v = 2 l ( ( p − p A ) S M − g ) .

v = 2 ⋅ 3,75 ( ( 450 − 100 ) ⋅ 10 3 ⋅ 50 ⋅ 10 − 4 75,0 − 10 ) ≈ 10 м/с.

После прохождения 3,75 м пути поршень приобретет скорость, приблизительно равную 10 м/с.

Источник

Источник

5.4. Практическое применение уравнения состояния идеального газа

5.4.3. Уравнение состояния для газа, находящегося в сосуде под поршнем

Для идеального газа, находящегося в сосуде под поршнем, необходимо учитывать следующее:

  • масса газа, находящегося в сосуде под поршнем, вследствие изменения термодинамических параметров газа не изменяется:

m = const;

  • постоянным остается также количество вещества (газа):

ν = const;

  • плотность газа и концентрация его молекул (атомов) изменяются:

ρ ≠ const, n ≠ const.

Пусть изменение состояния идеального газа, находящегося в цилиндрическом сосуде под поршнем, вызвано действием на поршень внешней силы F → (рис. 5.9).

Рис. 5.9

Начальное и конечное состояния газа в сосуде под поршнем описываются следующими уравнениями:

p 1 V 1 = ν R T 1 , p 2 V 2 = ν R T 2 , }

где p 1, V 1, T 1 – давление, объем и температура газа в начальном состоянии; p 2, V 2, T 2 – давление, объем и температура газа в конечном состоянии; ν – количество вещества (газа); R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К).

Условия равновесия поршня, закрывающего идеальный газ в сосуде (см. рис. 5.9), в начале процесса и в конце процесса выглядят следующим образом:

M g + F A = F 1 , M g + F A + F = F 2 , }

где M – масса поршня; g – модуль ускорения свободного падения; F A – модуль силы атмосферного давления, F A = p AS; p A – атмосферное давление; S – площадь сечения поршня; F 1 – модуль силы давления газа на поршень в начале процесса, F 1 = p 1S; p 1 – давление газа в сосуде в начальном состоянии; F – модуль силы, вызывающей сжатие газа; F 2 – модуль силы давления газа на поршень в конце процесса, F 2 = p 2S; p 2 – давление газа в сосуде в конечном состоянии.

Температура идеального газа, находящегося в сосуде под поршнем, может как изменяться, так и оставаться неизменной:

  • если процесс движения поршня происходит достаточно быстро, то температура газа изменяется –

T ≠ const;

  • если процесс происходит медленно, то температура газа остается постоянной –

T = const.

Давление идеального газа, находящегося в сосуде под поршнем, также может изменяться или оставаться неизменным:

  • если в задаче сказано, что поршень является легкоподвижным, то давление газа под поршнем – неизменно (в том случае, когда из условия задачи не следует обратное) – p = const;
  • в остальных случаях давление газа под поршнем изменяется – p ≠ const.

Масса поршня, закрывающего газ в сосуде, либо равна нулю, либо имеет отличное от нуля значение:

  • если в задаче сказано, что поршень является легким или невесомым, то масса поршня считается равной нулю –
Читайте также:  Читать полякову мерцающий сосуд

M = 0;

  • в остальных случаях поршень обладает определенной ненулевой массой –

M ≠ const.

Пример 19. В вертикальном цилиндре под легкоподвижным поршнем сечением 250 мм2 и массой 1,80 кг находится 360 см3 газа. Атмосферное давление равно 100 кПа. На поршень поставили гири, и он сжал газ до объема 240 см3. Температура газа при его сжатии не изменяется. Определить массу гирь.

Решение. На рисунке показаны силы, действующие на поршень:

  • сила тяжести поршня M g → ;
  • сила атмосферного давления F → A ;
  • сила давления газа F → 1 , действующая со стороны газа (до его сжатия);
  • сила давления газа F → 2 , действующая со стороны газа (после его сжатия);
  • m g → – вес гирь.

Условие равновесия поршня запишем в следующем виде:

  • до сжатия газа –

F 1 = Mg + F A,

где F 1 – модуль силы давления газа, F 1 = p 1S; p 1 – давление газа до сжатия; S – площадь поршня; Mg – модуль силы тяжести поршня; M – масса поршня; F A – модуль силы атмосферного давления, F A = p AS; p A – атмосферное давление; g – модуль ускорения свободного падения;

  • после сжатия газа –

F 2 = Mg + F A + mg,

где F 2 – модуль силы давления газа, F 2 = p 2S; p 2 – давление газа после сжатия; mg – вес гирь; m – масса гирь.

Считая процесс сжатия газа изотермическим, запишем уравнение Менделеева – Клапейрона для газа под поршнем следующим образом:

  • до его сжатия –

p 1V 1 = νRT,

где V 1 – первоначальный объем газа под поршнем; ν – количество газа под поршнем; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T – температура газа (не изменяется в ходе процесса);

  • после его сжатия –

p 2V 2 = νRT,

где V 2 – объем сжатого поршнем газа.

Равенство

p 1V 1 = p 2V 2

и два условия равновесия, записанные в явном виде, образуют полную систему уравнений:

p 1 S = M g + p A S , p 2 S = M g + p A S + m g , p 1 V 1 = p 2 V 2 , }

которую требуется решить относительно массы гирь m.

Для этого выразим отношение давлений p 2/p 1 из первой пары уравнений:

p 2 p 1 = M g + p A S + m g M g + p A S

и из третьего уравнения:

p 2 p 1 = V 1 V 2 ,

запишем равенство правых частей полученных отношений:

M g + p A S + m g M g + p A S = V 1 V 2 .

Отсюда следует, что искомая масса определяется формулой

m = ( M + p A S g ) ( V 1 V 2 − 1 ) .

Вычисление дает результат:

m = ( 1,80 + 100 ⋅ 10 3 ⋅ 250 ⋅ 10 − 6 10 ) ( 360 ⋅ 10 − 6 240 ⋅ 10 − 6 − 1 ) = 2,15 кг.

Указанное сжатие газа вызвано гирями массой 2,15 кг.

Пример 20. Открытый цилиндрический сосуд сечением 10 см2 плотно прикрывают пластиной массой 1,2 кг. Атмосферное давление составляет 100 кПа, а температура окружающего воздуха равна 300 К. На сколько градусов нужно нагреть воздух в сосуде, чтобы он приподнял пластину?

Решение. На рисунке показаны силы, действующие на пластину после нагревания газа:

  • сила тяжести пластины M g → ;
  • сила атмосферного давления F → A ;
  • сила давления газа F → 2 , действующая на пластину со стороны нагретого газа.

Пластина находится в состоянии неустойчивого равновесия; условие равновесия пластины выглядит следующим образом:

F 2 = Mg + F A,

где F 2 – модуль силы давления нагретого газа, F 2 = p 2S; p 2 – давление нагретого газа; S – площадь сечения сосуда; Mg – модуль силы тяжести пластины; M – масса пластины; g – модуль ускорения свободного падения; F A – модуль силы атмосферного давления, F A = p AS; p A – атмосферное давление.

Запишем уравнение Менделеева – Клапейрона следующим образом:

  • для газа в сосуде до его нагревания

p 1V = νRT 1,

где p 1 – давление газа в сосуде до нагревания (совпадает с атмосферным давлением), p 1 = p A; V – объем газа в сосуде; ν – количество вещества (газа) в сосуде; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1 – температура газа в сосуде до нагревания (совпадает с температурой окружающей среды);

  • для газа в сосуде после его нагревания

p 2V = νRT 2,

где p 2 – давление нагретого газа; T 2 – температура нагретого газа.

Два уравнения состояния газа (до и после нагревания) и условие равновесия пластины, записанные в явном виде, образуют полную систему уравнений:

p A V = ν R T 1 , p 2 V = ν R T 2 , p 2 S = M g + p A S ; }

систему необходимо решить относительно температуры T 2, до которой следует нагреть газ.

Для этого делением первой пары уравнений

p A V p 2 V = ν R T 1 ν R T 2

получим выражение для давления нагретого газа:

p 2 = p A T 2 T 1

и подставим его в третье уравнение системы:

p A T 2 S T 1 = M g + p A S .

Преобразуем полученное выражение к виду

T 2 = T 1 ( M g + p A S ) p A S = T 1 ( M g p A S + 1 ) ,

а затем найдем разность

Δ T = T 2 − T 1 = M g T 1 p A S .

Произведем вычисление:

Δ T = 1,2 ⋅ 10 ⋅ 300 100 ⋅ 10 3 ⋅ 10 ⋅ 10 − 4 = 36 К = 36 °С.

Пример 21. В цилиндрическом сосуде поршень массой 75,0 кг и площадью сечения 50,0 см2 начинает двигаться вверх. Давление газа под поршнем постоянно и равно 450 кПа, атмосферное давление составляет 100 кПа. Считая, что поршень движется без трения, определить модуль скорости поршня после прохождения им 3,75 м пути.

Решение. На рисунке показаны силы, действующие на поршень:

  • сила тяжести поршня M g → ;
  • сила атмосферного давления F → A ;
  • сила давления газа F → , действующая на поршень со стороны нагретого газа.

Под действием указанных сил, направленных вверх, поршень движется с ускорением a → :

F → + F → A + M g → = m a → ,

или в проекции на вертикальную ось –

F − F A − Mg = Ma,

где F – модуль силы давления газа под поршнем, F = pS; p – давление газа; S – площадь поршня; Mg – модуль силы тяжести поршня; M – масса поршня; g – модуль ускорения свободного падения; a – модуль ускорения поршня.

Преобразуем записанное уравнение, выразив модуль ускорения и выполнив подстановку выражений для модулей сил:

a = F − F A − M g M = ( p − p A ) S M − g .

Скорость поршня, его ускорение и пройденный путь связаны между собой соотношением

l = v 2 2 a ,

где l – пройденный путь; v – модуль скорости поршня.

Выразим отсюда модуль скорости поршня:

v = 2 a l

и подставим в записанную формулу выражение для модуля ускорения:

v = 2 l ( ( p − p A ) S M − g ) .

Выполним расчет:

v = 2 ⋅ 3,75 ( ( 450 − 100 ) ⋅ 10 3 ⋅ 50 ⋅ 10 − 4 75,0 − 10 ) ≈ 10 м/с.

После прохождения 3,75 м пути поршень приобретет скорость, приблизительно равную 10 м/с.

Источник