В закрытом сосуде вместимостью 8 л из которого откачали воздух

В закрытом сосуде вместимостью 8 л из которого откачали воздух thumbnail

За это задание ты можешь получить 1 балл. Уровень сложности: базовый.
Средний процент выполнения: 72.5%
Ответом к заданию 8 по физике может быть целое число или конечная десятичная дробь.

Задачи для практики

Задача 1

Сосуд вместимостью 12 л, содержащий газ при давлении 0,4 МПа, соединяют с другим сосудом, из которого откачан воздух. Найдите конечное значение давления. Процесс изотермический. Вместимость второго сосуда равна 3,0 л. Ответ выразите в (МПа).

Решение

Дано:

$V_1=12·10^{-3}м^3$

$V_2=3·10^{-3}м^3$

$p_1=0.4·10^6$Па

$T_1=T_2=T=const$

$p_2-?$

Решение:

Из уравнения Менделеева-Клайперона имеем: ${p_1V_1}/{T_1}={p_2(V_2+V_1)}/{T_2}$(1), т.к. $T_1=T_2=T=const$, можно записать: $p_1V_1=p_2(V-2+V_1)$(2), откуда $p_2={p_1V_1}/{(V_2+V_1)}={0.4·10^6·12·10^{-3}}/{15·10^{-3}}=0.32$МПа.

Ответ: 0.32

Показать решение

Полный курс

Задача 2

Газ, занимающий объём 12,32 л, охладили при постоянном давлении на 45 К, после чего его объём стал равен 10,52 л. Какова была первоначальная температура газа? Ответ выразите в (К).

Решение

Дано:

$∆T=45K$

$V_1=12.32·10^{-3}м^3$

$V_2=10.52·10^{-3}м^3$

$p_1=p_2=p=const$

$T_1-?$

Решение:

Из уравнения Менделеева-Клайперона имеем: ${p_1V_1}/{T_1}={p_2V_2}/{T_2}$(1), учитывая, что $p=const$, имеем: ${pV_1}/{T_1}={pV_2}/{T_2}$ или $V_1T_2=V_2T_1$(2). Так как газ охладили, то $T_2=T_1-∆T$(3). Подставим (3) в (2): $V_1T_1-V_1∆T=V_2T_1⇒T_1={V_1∆T}/{(V_1-V_2)}={12.32·10^{-3}·45}/{1.8·10^{-3}}=308K$.

Ответ: 308

Показать решение

Полный курс

Задача 3

В закрытом сосуде находится 120 г газа при комнатной температуре. Какая масса газа вытечет из сосуда, если после открытия крана давление в сосуде понизится в 4 раза? Ответ выразите в (кг).

Решение

Дано:

$T=20+273=293К$

$P_2={P_1}/{4}$

$m_1=0.12$кг

$∆m-?$

$T=const$

$V=const$

Решение:

Зная уравнение Менделеева-Клайперона составим систему 1 и 2.

${tableP_1V={m}/{M}·RT_1; P_2V={m}/{M}·RT_2;$, то $4={m_1}/{m_2}; m_2=0.03$.

$∆m=m_1-m_2=0.12-0.03=0.09$кг.

Ответ: 0.09

Показать решение

Полный курс

Задача 4

В сосуде содержится неон при температуре −3◦С. Во сколько раз увеличится средняя кинетическая энергия теплового движения молекул неона, если его нагреть до 132◦С? В ответе запишите в(во) сколько раз(а).

Решение

Дано:

$t_1=-3+273=270К$

$T_2=132+273=405K$

${E_{к_2}}/{E_{к_1}}$

Решение:

$E_к={3}/{2}KT$.

${E_{к_2}}/{E_{к_1}}={T_2}/{T_1}={405}/{270}=1.5$

Ответ: 1.5

Показать решение

Полный курс

Задача 5

В сосуде содержится аргон при температуре 327◦С. Какая абсолютная температура установится, если концентрацию аргона увеличить в 2 раза, а давление уменьшить в 3 раза? Ответ выразить в (K).

Решение

Дано:

$T^1_{Ар}=327+273=600K$

$n_2=2·n_1$

$P_2={P_1}/{3}$

$T_2$

Решение:

Запишем уравнение состояния газа дважды:

${tableP_1=n_1·K·T_1; P_2=n_2·K·T_2;$ $⇒T_2={T_1}/{2}={600}/{6}=100K$.

Ответ: 100

Показать решение

Полный курс

Задача 6

В сосуде содержится водород, манометр показывает 0,5 атмосферы. Какое установится давление, если концентрацию водорода увеличить в 6 раз, а среднюю кинетическую энергию теплового движения его молекул уменьшить в 4 раза? Ответ выразите в (кПа).

Решение

Дано:

$P_1=0.5·P_{атм}$

$n_2=6·n_1$

$E_{к_2}={E_{к_1}}/{4}$

$P_{атм}=10^5$

Решение:

${tableP_1={2}/{3}·n_1·E_{к_1}; P_2={2}/{3}·n_2·E_{к_2};$ $⇒{0.5·10^5}/{P_2}={1}/{6}:{1}/{4}$.

Для 1 и 2 случая $P_2=75·10^3$Па.

Ответ: 75

Показать решение

Полный курс

Задача 7

В закрытом сосуде вместимостью 8 л из которого откачали воздух

На рисунке показан график изменения давления 10 моль газа при изохорном нагревании. Найдите объём этого газа. Ответ округлите до целого, выразив в (дм3).

Решение

Дано:

$V-?$

$V=const$

$υ=10$моль

Решение:

Из уравнения Менделеева-Клайперона $pV=υRT⇒V={υRT}/{p}={10·8.31·100}/{100·10^3}=83.1дм^3$

Ответ: 83

Показать решение

Полный курс

Задача 8

1 моль идеального газа изохорно охлаждают на 200 К, при этом его давление уменьшается в 3 раза. Найдите первоначальную температуру газа. Ответ выразите в (К).

Решение

Дано:

$υ=1$моль

$υ=const$

$∆T=200K$

${P_1}/{3}=P_2$

$T_0-?$

Решение:

${P_1}/{T_1} > {P_2}/{T_2}$ – изохорный.

$T_0={P_1}/{P_2}·T_2=3(1-200)$

$2T_0=600$

$T_0=300K$

Ответ: 300

Показать решение

Полный курс

Задача 9

Определите плотность азота при температуре 27◦С и давлении 150 кПа. Ответ округлите до десятых. Ответ выразите в (кг/м3).

Решение

Дано:

$T=27°C=300K$

$P=150$кПа

$v=2(Т_2)$

$ρ-?$

Решение:

$PV={m}/{M}·RT$

$ρ·R·T=P·M$

$ρ={P·M}/{R·T}={150·10^3·0.028}/{8.31·300}=1.7{кг}/м^3$.

Ответ: 1.7

Показать решение

Полный курс

Задача 10

Определите температуру азота, имеющего массу 4 г, занимающего объём 831 см3 при давлении 0,2 МПа. Ответ выразите в (К).

Решение

Дано:

$N_2T-?$

$m=4·10^{-3}кг$

$V=831см^3$

$P=0.2·10^6$

$T_?$

Решение:

По закону Менделеева-Клайперона $pV={m}/{M}R·T; T={pv·M}/{m·R}$

$T={0.2·10^6·8.31·0.028}/{4·10^{-3}·8.31}=140K$

Ответ: 140

Показать решение

Полный курс

Задача 11

При повышении температуры идеального газа на 100 К среднеквадратичная скорость движения молекул выросла с 200 м/с до 600 м/с. Насколько надо понизить температуру газа, чтобы среднеквадратичная скорость уменьшилась с 600 м/с до 400 м/с? В ответе запишите на сколько (K).

Решение

Дано:

$∆T=100K↑$

$υ_{cр_1}=200$м/с

$υ_{cр_2}=600$м/с

$∆T-?↓$

$υ_{cр_2}=600$м/с

$υ_{cр_3}=400$м/с

Решение:

В первом процессе $T_1={υ_1^2μ}/{3R}$

$T_2={υ_2^2μ}/{3R}$

$∆T_1=T_2-T_1={μ}/{3R}·(υ_2^2·r_1^2)$

${μ}/{3R}={∆T}/{υ_2^2-r_1^2}={1}/{3200}$

Тогда $∆T_2={μ}/{3R}(υ_2^2-υ_3^2)={1}/{3200}(400^2-600^2)=62.5K$

Ответ: 62.5

Показать решение

Полный курс

Задача 12

В закрытом сосуде вместимостью 8 л из которого откачали воздух

Идеальный газ в количестве 1,5 моль совершает процесс, изображённый на рисунке. Какова температура газа в состоянии b? Ответ выразите в (K), округлив до сотых.

Решение

Дано:

$v=1.5$моль

$T_в-?$

$P=const=10^5$Па

$V_a=2л$

$V_в=4л$

Решение:

По закону Менделеева-Клайперона для точки а и в составим систему: ${tableP·V_a=vRT_a(1); P·V_в=vRT_в(2);$. Из (2) найдем: $T_в={5·10^5·4·10^{-3}}/{1.5·8.31}=160.45K$

Читайте также:  Атрофирование сосудов в носу

Ответ: 160.45

Показать решение

Полный курс

Задача 13

Концентрация молекул идеального одноатомного газа равна 2 · 1024 м−3. Какое давление оказывает газ на стенки сосуда, если при этом средняя кинетическая энергия молекулы равна 1,5 · 10−20 Дж? Ответ выразите в (кПа).

Решение

Дано:

$n=2·10^{24}м^{-3}$

$E_к=1.5·10^{-20}$

$P-?$

Решение:

${tableE_к={3}/{2}KT={3}/{2}K{P}/{nK}; P=nKT;$

Выразим и получим формулу из основ МКТ: $p={E_к·2n}/{3}={1.5·10^{-20}·2·2·10^{24}}/{3}=20$кПа.

Ответ: 20

Показать решение

Полный курс

Задача 14

Температура идеального газа понизилась от 700◦С до 350◦С. Во сколько раз при этом изменилась средняя кинетическая энергия движения молекул газа? Ответ округлить до сотых

Решение

Дано:

$T_1=700°C+273=973K$

$T_2=350°C+273=623K$

${E_1}/{E_2}-?$

Решение:

Из основ молекулярно-кинетической теории известно, что ${E_1}/{E_2}={T_1}/{T_2}$

${E_1}/{E_2}={973}/{623}=1.56$

Ответ: 1.56

Показать решение

Полный курс

Задача 15

В закрытом сосуде вместимостью 8 л из которого откачали воздух

На диаграмме pV изображены процессы перевода некоторой неизменной массы идеального газа из состояния 1 в состояние 3. Начальная (T1) и конечная (T3) температуры связаны между собой соотношением T3/T1…

Решение

Дано:

$Т_1-$начальная

$Т_2$конечная

${T_3}/{T_1}-?$

Решение:

Запишем уравнение Менделеева-Клайперона для начальной и конечной точки состояния: ${table.{p_1·V_1}/{T_1}=υR; .{p_3·V_3}/{T_3}=υR;$.

$⇒{p_1·V_1}/{T_1}={p_3·V_3}/{T_3}⇒{T_3}/{T_1}={p_3·V_3}/{p_1·V_1}⇒{T_3}/{T_1}={p_0·3V_0}/{3p_0·V_0}=1$.

Ответ: 1

Показать решение

Полный курс

Задача 16

При какой температуре молекулы гелия имеют такую же среднюю квадратичную скорость, как молекулы водорода при 27◦С? Ответ выразите в (◦ С).

Решение

Дано:

$t_{H_2}=27°C$

$_{He}=_{H_2}$

$t_{He}-?$

Решение:

Средняя квадратичная скорость молекул гелия и водорода ($He$ и $H_2$) равны соответственно: $_{He}=√{{3RT_{He}}/{μ_{He}}}$, где $T_{He}=t_{He}+273°C$

$_{H_2}=√{{3RT_{H_2}}/{μ_{H_2}}}$, где $T_{H_2}=t_{H_2}-273°C$

Молярные массы гелия $He$ и водорода $H_2$ равны соответственно: $μ_{He}=4·10^{-3}кг/моль; μ_{H_2}=2·10^{-3}кг/моль; T_{H_2}=27°C+273°C=300K$

$√{{3RT_{He}}/{μ_{He}}}=√{{3RT_{H_2}}/{μ_{H_2}}}⇒{3RT_{He}}/{μ_{He}}={3RT_{H_2}}/{μ_{H_2}}⇒T_{He}={T_{H_2}·μ_{He}}/{μ_{H_2}}={300·4·10^{-3}}/{2·10^{-3}}=600K$, тогда $t_{He}=T_{He}-273°C=600°C-273°C=327°C$

Ответ: 327

Показать решение

Полный курс

Задача 17

В закрытом сосуде вместимостью 8 л из которого откачали воздух

На рисунке изображено изменение состояния идеального газа. Во сколько раз температура в состоянии 2 больше, чем температура в состоянии 1?

Решение

Дано:

$p_1=p_0$

$V_1=V_0$

$p_2=3p_0$

$V_2=5V_0$

${T_2}/{T_1}-?$

Решение:

Из уравнения Менделеева-Клайперона: $pV={m}/{μ}RT$(1), следует равенство ${p_1V_1}/{T_1}={p_2V_2}/{T_2}⇒{p_0V_0}/{T_1}={3p_0·5V_0}/{T_2}$(2).

Из (2) имеем: $p_0V_0T_2=3p_0V_0·5T_1$

$T_2=3·5T_1⇒T_2=15T_1$ или ${T_2}/{T_1}=15$

Ответ: 15

Показать решение

Полный курс

Источник

Задача 28. 
При 17°С некоторое количество газа занимает объем 580 мл. Какой объем займет это же количество газа при 100°С, если давление его останется неизменным?
Решение: 
По закону Гей – Люссака при постоянном давлении объём газа изменяется прямо пропорционально абсолютной температуре (Т):

V2 – искомый объём газа;
T2 – соответствующая V2 температура;
V1 – начальный объём газа при соответствующей температуре Т1.

По условию задачи V1 = 580мл; Т1 = 290К (273 + 17 = 290) и Т2 = 373К (273 + 100 = 373). Подставляя эти значения в выражение закона Гей – Люссака, получим:

Ответ: V2 = 746мл.

Задача 29.
Давление газа, занимающего объем 2,5л, равно 121,6 кПа (912мм рт. ст.). Чему будет равно давление, если, не изменяя температуры, сжать газ до объема в 1л?
Решение:
Согласно закону Бойля – Мариотта, при постоянной температуре давление, производимое данной массой газа, обратно пропорционально объёму газа:

 Обозначив искомое давление газа через Р2, можно записать: 

Ответ: Р2 = 304кПа (2280мм.рт.ст.). 

Задача 30. На сколько градусов надо нагреть газ, находящийся в закрытом сосуде при 0 °С, чтобы давление его увеличилось вдвое?
Решение:
При постоянном объёме давление газа изменяется прямо пропорционально температуре: 

По условию задачи Т1 = 0 °С + 273 = 273К; давление возросло в два раза: Р2 = 2Р1.

Подставляя эти значения в уравнение, находим:

Ответ: Газ нужно нагреть на 2730С.

Задача 31. 
При 27°С и давлении 720 мм.рт. ст. объем газа равен 5л. Кой объем займет это же количество газа при 39°С и давлении 104кПа?
Решение:
Зависимость между объёмом газа, давлением и температурой выражается общим уравнением, объединяющим законы Гей-Люссака и Бойля-Мариотта:

где Р и V – давление и объём газа при температуре Т; Р0 и V0 – давление и объём газа при нормальных условиях. Данные задачи: V = 5л; Т = 298К (273 + 25 = 298); Р = 720 мм.рт.ст. (5,99 кПа); Р0 = 104 кПа; Т = 312К (273 + 39 = 312); Т = 273К. Подставляя данные задачи в уравнение, получим:

Ответ: V0 = 4,8л

Задача 32. 
При 7°С давление газа в закрытом сосуде равно 96,0 кПа. Каким станет давление, если охладить сосуд до —33 °С?
Решение:
При постоянном объёме давление газа изменяется прямо пропорционально абсолютной температуре:

Читайте также:  Сосуды в глазах тяжесть

Обозначим искомое давление через Р2, а соответствующую ему температуру через Т2. По условию задачи Р1 = 96,0 кПа; Т1 = 280К (273 + 7 = 280); Т2 = 240К (273 – 33 = 240). Подставляя эти значения в уравнение, получим: 

Ответ: Р2 = 82,3кПа.

Задача 33. 
При нормальных условиях 1г воздуха занимает объем 773 мл. Какой объем займет та же масса воздуха при 0 °С и )и давлении, равном 93,3 кПа (700мм. рт. ст.)?
Решение:
Зависимость между объёмом газа, давлением и температурой выражается общим уравнением, объединяющим законы Гей-Люссака и Бойля-Мариотта:

где Р и V – давление и объём газа при температуре Т; Р0 и V0 – давление и объём газа при нормальных условиях. Данные задачи: Р0 = 101,325кПа; V0 = 773мл; Т0 = 298К (273 + 25 = 298); Т = 273К; Р = 93,3кПа. Подставляя данные задачи и преобразуя уравнение, получим:

Ответ: V = 769, 07 мл.

Задача 34. 
Давление газа в закрытом сосуде при 12°С равно 100 кПа (750мм рт. ст.). Каким станет давление газа, если нагреть сосуд до 30°С?
Решение:
При постоянном объёме давление газа изменяется прямо пропорционально абсолютной температуре:

Обозначим искомое давление через Р2, а соответствующую ему температуру через Т2. По условию задачи Р1 = 100 кПа; Т1 = 285К (273 + 12 = 285); Т2 = 303К (273 + 30 = 303). Подставляя эти значения в уравнение, получим:

Ответ: Р2 = 106,3кПа.

Задача 35.  
В стальном баллоне вместимостью 12л находится при 0°С кислород под давлением 15,2 МПа. Какой объем кислорода, находящегося при нормальных условиях можно получить из такого баллона?
Решение:
Зависимость между объёмом газа, давлением и температурой выражается общим уравнением, объединяющим законы Гей-Люссака и Бойля-Мариотта:

где Р и V – давление и объём газа при температуре Т; Р0 и V0 – давление и объём газа при нормальных условиях. Данные задачи: V = 12л; Т = 273К (273 + 0 = 2273); Р =15,2МПа); Р0 = 101,325кПа; Т0 = 298К (273 + 25 = 298). Подставляя данные задачи в уравнение, получим:

Ответ: V0 = 1,97м3.

Задача 36. 
Температура азота, находящегося в стальном баллоне под давлением 12,5 МПа, равна 17°С. Предельное давление для баллона 20,3МПа. При какой температуре давление азота достигнет предельного значения?
Решение:
При постоянном объёме давление газа изменяется прямо пропорционально абсолютной температуре:

Обозначим искомое давление через Р2, а соответствующую ему температуру через Т2. По условию задачи Р1 = 12,5МПа; Т1 = 290К (273 + 17 = 290); Р2 = 20,3МПа. Подставляя эти значения в уравнение, получим:

Ответ: Т2 = 1980С.

Задача 37. 
При давлении 98,7кПа и температуре 91°С некоторое количество газа занимает объем 680 мл. Найти объем газа при нормальных условиях.
Решение:
Зависимость между объёмом газа, давлением и температурой выражается общим уравнением, объединяющим законы Гей-Люссака и Бойля-Мариотта:

где Р и V – давление и объём газа при температуре Т; Р0 и V0 – давление и объём газа при нормальных условиях. Данные задачи: Р0 = 101,325кПа; V = 680мл; Т0 = 298К (273 + 25 = 298); Т = 364К (273 + 91 = 364); Р = 98,7кПа. Подставляя данные задачи и преобразуя уравнение, получим:

<

Ответ: V0 = 542,3мл.

Задача 38.  
При взаимодействии 1,28г металла с водой выделилось 380 мл водорода, измеренного при 21°С и давлении 104,5кПа (784мм рт. ст.). Найти эквивалентную массу металла.
Решение: 
Находим объём выделившегося водорода при нормальных условиях, используя уравнение:

где Р и V – давление и объём газа при температуре Т = 294К (273 +21 = 294); Р0 = 101,325кПа; Т0 = 273К; Р = 104,5кПа. Подставляя данные задачи в уравнение, 

получим:

Согласно закону эквивалентов, массы (объёмы) реагирующих друг с другом веществ m1 и m2 пропорциональны их эквивалентным массам (объёмам):

Мольный объём любого газа при н.у. равен 22,4л. Отсюда эквивалентный объём водорода равен 22,4 : 2 = 11,2л или 11200 мл. Тогда, используя формулу закона эквивалентов, рассчитаем эквивалентную массу металла:

Ответ: mЭ(Ме) = 39,4г/моль.

Задача 39. 
Как следует изменить условия, чтобы увеличение массы данного газа не привело к возрастанию его объема: а) понизить температуру; б) увеличить давление; в) нельзя подобрать условий?
Решение:
Для характеристики газа количеством вещества (n, моль) применяется уравнение РV = nRT, или   – это уравнение Клапейрона-Менделеева. Оно связывает массу (m, кг); температуру (Т, К); давление (Р, Па) и объём (V, м3) газа с молярной массой (М, кг/моль).

Тогда из уравнения Клапейрона-Менделеева объём газа можно рассчитать по выражению:

Отсюда следует, что V = const, если при увеличении массы (m) газа на некоторую величину будет соответственно уменьшена температура (T) системы на некоторое необходимое значение. Объём системы также не изменится при постоянной температуре, если при увеличении массы (m) газа на некоторую величину будет соответственно увеличено давление (P) системы на необходимую величину.

Читайте также:  Вегето сосудистая дистония спазмы сосудов

Таким образом, при увеличении массы газа объём системы не изменится, если понизить температуру системы или же увеличить давление в ней на некоторую величину.    

Ответ: а); б).

Задача 40. 
Какие значения температуры и давления соответствуют нормальным условиям для газов: а) t = 25 °С, Р = 760 мм. рт. ст.; б) t = 0 °С, Р = 1,013 • 105Па; в) t = 0°С, Р = 760 мм. рт. ст.?
Решение:
Состояние газа характеризуется температурой, давлением и объёмом. Если температура газа равна 0 °С (273К), а давление составляет 101325 Па (1,013 • 105) или 760 мм. рт. ст., то условия, при которых находится газ, принято считать нормальными.

Ответ: б); в).

Источник

В сосуде содержится гелий под давлением кПа. Концентрацию гелия увеличили в раза, а среднюю кинетическую энергию его молекул уменьшили в раза.

Определите установившееся давление газа.

Ответ дайте в кПа.

Это задание решали 206 раз. С ним справились 32% пользователей.

Газ, который можно считать идеальным, перешел из состояния в состояние

Определите отношение давлений газа в начальном и конечном состояниях

Масса газа постоянна.

Это задание решали 60 раз. С ним справились 27% пользователей.

На рисунке изображен процесс перехода идеального газа постоянной массы из состояния в состояние

Найдите, во сколько раз изменилась абсолютная температура газа в состоянии по сравнению с абсолютной температурой в состоянии

Это задание решали 134 раза. С ним справились 69% пользователей.

Это задание решали 53 раза. С ним справились 51% пользователей.

На рисунке изображена зависимость давления от абсолютной температуры для
постоянной массы идеального газа.

Объем газа в состоянии равен  л.

Определите объем газа (в л) в состоянии

Это задание решали 61 раз. С ним справились 69% пользователей.

Это задание решали 101 раз. С ним справились 37% пользователей.

 моль идеального газа изохорно нагревают на  К, при этом его давление
увеличивается в  раза.

Какова первоначальная абсолютная температура газа?

Это задание решали 60 раз. С ним справились 37% пользователей.

Во сколько раз увеличится значение квадрата среднеквадратичной скорости
движения молекул, если для данной массы газа его внутренняя энергия
увеличится в раза?

Это задание решали 56 раз. С ним справились 64% пользователей.

Давление идеального газа в герметичном сосуде объемом л равно кПа.

Каким будет давление (в кПа) этого газа, если объем сосуда изотермически
увеличить в раза?

Это задание решали 67 раз. С ним справились 57% пользователей.

Давление газа на стенки герметичного баллона равно кПа.

Чему будет равно давление этого газа (в кПа) при увеличении квадрата средней скорости движения молекул газа в раза?

Это задание решали 46 раз. С ним справились 76% пользователей.

В ходе эксперимента давление разреженного газа в сосуде увеличилось в раза, а средняя энергия теплового движения его молекул уменьшилась в раза.

Во сколько раз увеличилась концентрация молекул газа в сосуде?

Это задание решали 123 раза. С ним справились 23% пользователей.

В сосуде находится идеальный газ при температуре C. Концентрация молекул этого газа равна м

Определите давление (в кПа), создаваемое
газом на стенки сосуда.

Постоянная Больцмана равна Дж/К.

Это задание решали 88 раз. С ним справились 50% пользователей.

В ходе эксперимента давление разреженного газа в сосуде уменьшилось в
раза.

Во сколько раз уменьшилось среднее значения квадрата скорости
движения молекул этого газа, если его концентрация осталась неизменной?

Это задание решали 25 раз. С ним справились 40% пользователей.

Идеальный газ находится в закрытом сосуде.

Во сколько раз уменьшится давление в этом сосуде, если его наполнить другим идеальным газом, молярная масса которого в два раза больше?

Абсолютная температура и плотность газа в
сосуде не изменились.

Это задание решали 70 раз. С ним справились 74% пользователей.

При проведении опыта в сосуд постоянного объема закачали воздух и одновременно сосуд с воздухом нагрели. В конечном равновесном состоянии воздуха в сосуде абсолютная температура повысилась в раза, а его давление возросло в раза по сравнению с начальными значениями.

Во сколько раз увеличилась масса воздуха в сосуде?

Это задание решали 94 раза. С ним справились 48% пользователей.

Источник